Electric conductivity of anisotropic quark-gluon plasma

Document Type : Full length research Paper

Authors

1 Department of Physics, Faculty of Science, Ilam University, Ilam, Iran

2 Department of Physics,Faculty of Science, Ilam University, Ilam, Iran

3 Department of Engineering Science and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

In this paper, we consider the anisotropic super Yang-Mils plasma at finite temperature and and calculate its conductivity in the presence of a constant electric field. By applying the electric field in two different directions, we study the effect of the electric field, charge density and anisotropy parameter on the electrical conductivity of the plasma. We first consider the constant external electric field in the longitudinal x-direction, and then the external electric field is applied to the system in the longitudinal z- direction. At the end, we compare the results of two different directions with each other. Also, we compare the results with those from isotropic Ads-Schwarzschild black hole and non-critical Ads6 model.

Keywords


[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Advances in Theoretical and Mathematical Physics2 (1998) 231-252. https://10.4310/ATMP.1998.v2.n2.a1
[2] E. Witten, Anti de Sitter Space and Holography, Advances in Theoretical and Mathematical Physics2 (1998) 253- 291. https://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
[3]S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory, Physics Letters 428 (1998) 105-114. http://10.1016/S0370-2693(98)00377-3
[4] C. Bachas, M. Porrati, Pair creation of open strings in an electric field, Physics Letters 296 (1992) 77-84. https://10.1016/0370-2693(92)90806-F
[5] C. Bachas, D-brane dynamics, Physics Letters B,374 (1996) 37-42. https://10.1016/0370-2693(96)00238-9
[6] G.W. Semenoff, K. Zarembo, Holographic Schwinger Effect, Physical Review Letters, 107 (2011) 17- 21. https://10.1103/PhysRevLett.107.171601
[7] T. Oka, H. Aoki, Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators, Physical Review Letters, 95 (2005) 13-23. https://doi.org/10.1103/PhysRevLett.95.137601
[8] T. Oka,  H. Aoki, Quantum Foundations And Open Quantum Systems, Lecture Note. World scientific, 2008.
[9] E. Bavarsad ,M. Mortezazadeh, Trace of energy-momentum tensor and gravitational backreaction of Schwinger scalars in 3D de Sitter spacetime, Iranian Journal of Physics Research,18 (2018) 91-103.
[10] E. BavarsadN. Margosian, Gravitational backreaction effect of Schwinger pair production in a strong electric field in de Sitter spacetime. Journal of Research on Many-body System 17 (2018) 1-10. 10.22055/jrmbs.2018.13879
[11] K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma from Big Bang to Little Bang, Cambridge University Press, 2005. https://inspirehep.net/record/702469/
[12] D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: Event by event P and CP violation, Nuclear Physics A. 803 (2008) 227-253. https://10.1016/j.nuclphysa.2008.02.298
[13] F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, The Color Glass Condensate, Annual Review of Nuclear and Particle Science, 60 (2010) 463-489, https://10.1146/annurev.nucl.010909.083629   
[14] T. Lappi, L. McLerran, Some Features of the Glasma, Nuclear Physics A, 772 (2006) 113-224, https://10.1016/j.nuclphysa.2006.04.001
[15] W. Florkowski, Anisotropic fluid dynamics in early stage of relativistic heavy-ion collisions, Physics Letters B668 (2008) 32-35. https://10.1016/j.physletb.2008.07.101
[16] W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at early stages of relativistic heavy-ion collisions, Acta Physica Polonica B, 40 (2009) 2843-2863. https://inspirehep.net/record/812010
[17] R. Ryblewski, W. Florkowski, General formulation of transverse hydrodynamics, Physical Review C 77 (2008) 64906. https://10.1103/PhysRevC.77.064906
[18] P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma, Physical Review D 68 (2003) 036004. https://doi.org/10.1103/PhysRevD.68.036004.
[19] P. Arnold, G. Moore, L. Yaffe, Fate of non-Abelian plasma instabilities in 3+1 dimensionsPhysical Review D 72 (2005) 54003-54031.  https://doi.org/10.1103/PhysRevLett.78.2062.
[20] A. Rebhan, M. Strickland and M. Attems,, Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations, Physical Review D, 78 (2008) 045023. 10.1103/PhysRevD.78.045023
[21] D. Mateos, D. Trancanelli, Anisotropic N=4 Super-Yang-Mills Plasma and Its Instabilities, Physical Review Letters, 107 (2011) 101601. https://doi.org/10.1103/PhysRevLett.107.10161
[22] D. Mateos, D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma) Journal of High Energy Physics, 054 (2011). http://10.1007/JHEP07(2011)054.
[23] D. AvilaD. FernandezL. PatinoD. Trancanelli, Thermodynamics of anisotropic branes, Journal of High Energy Physics, 132 (2016) 1-26. https://10.1007/JHEP11(2016)132.
[24] A. Karch, A. O’Bannon, Metallic AdS/CFT, Journal of High Energy Physics, 09 (2007) 024. https://doi.org/10.1088/11266708/2007/09/024
[25] K. Hashimoto, T. Oka, Vacuum instability in electric fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian thermalization, Journal of High Energy Physics, 10 (2013) 116. https://doi.org/10.1007/JHEP10(2013)116
[26] S. Heshmatian, J. Naji, Electric Conductivity of Non-Equilibrium QCD, Journal of Research on Many-body System, 10 (2017) 51-59.10.22055/jrmbs.2017.13006