Efficiency evaluating of modified fullerene nanofiltration on removal of heavy metals from aqueous media

Document Type : Full length research Paper

Author

Department of Chemistry, Doroud Branch, Islamic Azad University, P.O. Box: 133. Doroud. Iran

Abstract

The aim of this study has investigated the removal and reduction of heavy metals such as nickel and cadmium by filtration of modified Nano-fullerene (C60) with tetrahydrofuran. The optimum conditions have been evaluated for the removal of heavy metal ions by nano-adsorbents, which are pH, adsorbent concentration, adsorbent amount, time and temperature. The results show optimum conditions for both ions are almost the same amount. The adsorption of both ions was investigated with the two-oxidation number by adsorption isotherm models. The results show that the best absorption isotherm for Cd2+ is Dobbin-Raduskvich isotherm and for Ni2+ is Freundlich isotherm. The absorption process for both ions is physical, monolayers and exothermic. The data show that the modified nanofullerene has a high thermal and mechanical resistance and is completely stable, which can be used for more than 20 times with high efficiency of %91 without losing its activity.

Keywords

Main Subjects


 
[1]V.N. Thekkudan, V. K. Vaidyanathan, S. K. Ponnusamy, C. Charles, S. Sundar, D. Vishnu, S. Anbalagan, V. K. Vaithyanathan. S. Subramanian. Review on Nano Adsorbents: A Solution For Heavy Metal Removal From Waste Water. IET Nanobiotechnology 11 3 (2016) 1-12.
DOI:10.1049/iet-nbt.2015.0114
[2] S. Ahmadizadeh, I. Kazeminezhad. Effect of pH on the removal of copper ions from aqueous solutions using iron oxide nanoparticles and iron oxide/ hydroxyapatite nanocomposites. Journal of Research on Many-body Systems 3 5 (2014) 41-49.
[3] M.S.M. Li, F.P. Filice, J.D. Henderson, Z. Ding. Probing Cd2+-Stressed Live Cell Membrane Permeability with Various Redox Mediators in Scanning Electrochemical Microscopy, Journal of Physical Chemistry C 120(11) (2016) 6094-6103.
[4] X. Guo, S. Tang, Y. Song, J. Nan. Adsorptive removal of Ni2+ and Cd2+ from wastewater using a green longan hull adsorbent, Adsorption Science & Technology 36(1-2) (2018) 762–773.
[5] C. Sarka, J. KumarBasu, A.N. Samanta. Removal of Ni2+ ion from waste water by Geopolymeric Adsorbent derived from LD Slag,  Journal of Water Process Engineering 17 (2017) 237-244. https://doi.org/10.1016/j.jwpe.2017.04.012
[6] A. Hosseini-Abari, B.G. Kim, S.H. Lee, G. Emtiazi, W. Kim, J.H. Kim. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.  Journal of Basic Microbiology 56(12) (2016) 1331-133.
[7] ISIRI-1053(Institute of Standards and Industrial Research of Iran). Drinking water Physical and chemical specifications.(1376).ICS:13.060.020.
[8] B.H. Devmunde, A.V. Raut, S.D. Birajdar, S.J. Shukla, D.R. Shengule, K.M. Jadhav. Structural, Electrical, Dielectric, and Magnetic Properties of Cd2+ Substituted Nickel Ferrite Nanoparticles, Journal of Nanoparticle 2016 (2016) Article ID 4709687, 1-8.
[9] M.Wang, Z. Wang, X. Zhou, S. Li. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Applied Science 9(547) 2019 1-14.
[10] R. Valizadeh, L. Mahdavian. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC), International Journal of Phytoremediation 18(4) (2016) 329-36.
[11] S. Keykhosravi, I. B. Rietveld, D. Couto, J.L. Tamarit, M. Barrio, R. Céolin, F. Moussa. [60]Fullerene for Medicinal Purposes, A Purity Criterion towards Regulatory Considerations. Materials 12(2571) (2019) 1-16. DOI: 10.3390/ma12162571
[12] P. Tan, J. Wen, V. Hu, X.Tan. Adsorption of Cu2+ and Cd2+ from aqueous solution by novel electrospun poly(vinyl alcohol)/graphene oxide nanofibers,  RSC Advances 6(2016) 79641-79650.
[13] L. Mahdavian. A study of B12N12 nanocage as potential sensor for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxin, Russian Journal of Applied Chemistry 89(9) (2016) 1528-1535. DOI:
[14] D. Zhao, J. Ning, S. Li, , M. Zuo. Synthesis and Thermoelectric Properties of C60/Cu2GeSe3 Composites, Journal of Nanomaterials 2016 (2016) Article ID 5923975, 1-7.
[15] A. Husen,  K.S. Siddiqi. Carbon and fullerene nanomaterials in plant system, Journal of Nanobiotechnology 12:16 (2016) 2-10.
[16] A. Almasi Nahnaji, L. Mahdavian. The removal of chromium (VI) by Nanocomposites Chitosan-tragacanth solution from aqueous solution, Environmental Health Engineering 3(2) (2016) 129-142.
[17] I. Langmuir. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38 (1961) 2221-2295.
[18] H.M.F. Freundlich. uber die adsorption in losungen, zeitschrift für physikslische chemie 57 (1906) 385-470.
[19] M.I. Tempkin, V. Pyzhev. Kinetics of ammonia synthesis on promoted iron catalyst, Acta physicochimica USSR 12 (1940) 327–356.
[20] C. Aharoni, M. Ungarish.  Kinetics of activated chemisorption. Part 2-Theoretical models, Journal Chemical Society Faraday Transactions 73 (1977) 456-464.

[21] A. Gunay, E. Arslankaya, I. Tosun. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, Journal of Hazardous Materials 146(2007) 362–371.

DOI: 10.1016/j.jhazmat.2006.12.034

[22] A. Dabrowski. Adsorption — from theory to practice, Advanced Colloid Interface Science 93 (1-3) (2001) 135-224.

https://doi.org/10.1016/S0001-8686(00)00082-8

[23] A.O. Dada, A.P.Olalekan, A.M. Olatunya, O. Dada Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR Journal of Applied Chemistry 3 (2012) 38-45.
[24] V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chemical Engineering Journal 148 (2009) 354-364
[25] R. Sakurovs, S. Day, S. Weir, G. Duffy. Application of a modified Dubinin− Radushkevich equation to adsorption of gases by coals under supercritical conditions, Energy Fuels 2(2) (2007) 992-997.
DOI:10.1021/ef0600614

[26] L. Roshanfekr Rad, A. momeni, B. Farshi Ghazani, M. Irani, M. Mahmoudi, B. Noghreh. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent, Chemical Engineering Journal256(2014) 119-127.

https://doi.org/10.1016/j.cej.2014.06.066

[27] M. Amini, M. A. Ziaei Madbouni, A. Sharifi.Investigating the Potential of Cadmium Ions Removal fromAqueous Solutions using Date-palm Leaf Ash. J. Env. Sci. Tech 20(4) (2019) 153-163.
DOI:10.22034/jest.2019.13708

[28] M. Abedi, M. Hossien Salmani, Z. Reisi. Cadmium Removal from Aqueous Solutions by Magnetic Iron Oxide Bio Adsorbents. Journal of Applied Chemistry 8(28) (2014) 91-102.

DOI: 10.22075/chem.2017.654

[29] H. Shekari, M.H. Sayadi, M.R. Rezaei, A. Alahresani. An Investigation of Cadmium Removal by Nickel Ferrite-Titanium Oxide Nanocomposite from Aqueous Solutions. JRUMS 16 (8) (2017) 703-714.
[30] M.R. Fathi, D. Almaseifar. Simultaneous removal of Cd(II), Ni(II), and Cr(III) ions from industrial wastewater by chitosan- dendrimer composite using ICP-OES. Journal of Applied Chemistry 12 (43) (2017) 151-170.
DOI:10.22075/chem.2017.2368

[31] N. Kholghi , H. Amani, S. Malek mahmoudi, A.R. Amiri. The removal of heavy metals (Ni, Cr, Cd) from soil contamination with crude oil using rhamanolipid biosurfactant. Journal of Microbial World 12 (1) (2019) 62-72.