Investigation of Graphene and Silicene-DNA nanostructures: DNA Sensing

Document Type : Full length research Paper

Authors

1 1Department of Physics, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Azarbaijan Shahid Madani University Department of Physics 53714-161, Tabriz, Iran

3 Department of Physics, University of Zanjan, 45195-313, Zanjan, Iran

Abstract

In this paper, the electrical transport of graphene and silicene nanostructures connected to two semi-infinite graphene and silicene electrodes have been investigated. In these structures, we created nanopores and passed the DNA molecule through the nanopore. Using the Green's Function method and Tight binding approximation, two types of systems with zigzag edges in graphene and silicene have been investigated. By connecting the nanoribbons to the metal electrodes, the created current passes from the nanopore and DNA, from the left to the right. This electric current flow increases the system's sensitivity to the organic DNA bases. We have introduced a new scheme for DNA sequencing.

Keywords

Main Subjects


[1] L.X. Fang, J.T. Cao, K.J. Huang, A Sensitive electrochemical biosensor for specific DNA sequence detection based on flower-like VS2, graphene and Au nanoparticles signal amplification, Journal of Electroanalytical Chemistry, 746 (2015) 1-8. https://doi.org/10.1016/ j.jelechem.2015.03.026
[2] A. Girdhar, Ch. Sathe, K. Schulten, J.P. Leburton, Tunable graphene quantum point contact transistor for DNA detection and characterization, Nanotechnology 26 (2015) 134005.    https://doi.org/10.1088/0957-4484/26/ 13/134005
[3] L. Zhang, Zh. Lu, Q. Zhao, J. Huang, H. Shen, Zh. Zhang, Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide, Nano Mecro, Small 7 (2011) 460-464. https://doi.org/10.1002/smll.201001522
[4] S. Zeng, L. Chen, Y. Wang, J. Chen, Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations, Journal of Physics D: Applied Physics, 48 (2015) 275402. https://doi.org/10.1088/0022-3727/48/27/2754 02
[5] H. Sadeghi, S. Bailey, C.J. Lambert, Silicene-based DNA nucleobase sensing, Applied Physics Letters, 104 (2014) 103104. https://doi.org/10.1063/1.4868123
[6] Ch. Lu, P.J. Huang, B. Liu, Y. Ying, J. Liu, Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing, Langmuir 32 (2016) 10776- 10783. https://doi.org/10.1021/acs.langmuir.6b03032
[7] A.K.A. Jaini, L.B. Hughes, M.M. Kitimet, K.J. Ulep, M.C. Leopold, C.A. Parish, Halogen Bonding Interactions for Aromatic and Nonaromatic Explosive Detection, American Chemical Society Sensors 4 (2019) 286-397. https://doi.org/10.1021/acssensors.8b01246
[8] J.P. Fried, J.L. Swett, X. Bian, J.A. Mol, Challenges in fabricating graphene nanodevices for electronic DNA sequencing, Materials Research Society Communications, 8 (2018) 703-711.              https://doi.org/10.1557/mrc.2018.187
[9] S.J. Heerema, L. Vicarelli, S. Pud, R.N. Schouten, H.W. Zandbergen, C. Dekker, Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore, American Chemical Society Nano, 12 (2018) 2623-2633. https://doi.org/10.1021/ acsnano.7b08635
[10] P.T. Kim Loan, D. Wu, Ch. Ye, X. Li, V.Th. Tra, Q. Wei, L. Fu, A. Yu, L.J. Li, Ch. T. Lin, Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection, Biosensors and Bioelectronics, 99 (2018) 85-91. https://doi.org/10.1016/j.bios. 2017.07.045
[11] J. Prasongkit, E.F. Martins, F.A.L. de Souza, W.L. Scopel, R.G. Amorim, V. Amornkitbamrung, A.R. Rocha, R.H. Scheicher, Topological Line Defects Around Graphene Nanopores for DNA Sequencing, Journal of Physical Chemistry C 122 (2018) 7094-7099. https://doi.org/10.1021/acs.jpcc.8b00241
[12] R. Abadi, M. Izadifar, M. Sepahi, N. Alajlan, T. Rabczuk, Computational modeling of graphene nanopore for using in DNA sequencing devices, Physica E: Low-dimensional Systems and Nanostructures, 103 (2018) 403-416. https://doi.org/10.1016/j.physe.2018.05.003
[13] S. Mohammadi, F. Khoeini, M. Esmailpour, M. Khalkhali, Investigation of electrical properties in AB-Stacked Bilayer Graphene-DNA nanostructures, Superlattices and Microstructures, 130 (2019) 182-193. https://doi.org/10.1016/j.spmi.2019.04.029
[14] Y. W. Son, M.L. Cohen, S.G. louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters, 97 (2007) 089901. https://doi.org/10.1103/PhysRevLett.97.216803
[15] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: Compelling Experimental Evidence for Graphene like Two- Dimensional Silicon, Physical Review Letters, 108 (2012) 155501-155506. https://doi.org/10.1103/PhysRevLett.108.1555 01
[16] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room tempature, Nature Nanotechnology, 10 (2015) 227-231. https://doi.org/10.1038/nnano.2014.325
[17] P.R. Wallace, The Band Theory of Graphite, Physical Review Journals Archive, 71 (1947) 622.      https://doi.org/10.1103/PhysRev.71.622
[18] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, Journal of the Physical Society of Japan, 65 (1996) 1920-1923. https://doi.org/10.1143/jpsj.65.1920
[19] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B 54 (1996) 17954. https://doi.org/10.1103/PhysRevB.54.17954
[20] T.H. Osborn, A.A. Farajian, Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution, Nano Research, 7 (2014) 945-952.   https://doi.org/10.1007/s122 74-014-0454-7
 [21] J.R. Alvarez, D. Skachkov, S.E. Massey, J. Lu, A. Kalitsov, J.P. Velev, Intrinsic Noise from Neighboring Bases in the DNA Transverse Tunneling Current, Physical Review Applied, 1 (2014) 034001. https://doi.org/10.1103/ PhysRevApplied.1.034001
[22] H. Lodish, A. Berk, Ch.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh, P. Matsudaira, Molecular Cell Biology, Biological Sciences, 6th Edition, (2000).
[23] A. Girdhar, Ch. Sathe, K. Schulten, J.P. Leburton, Graphene quantum point contact transistor for DNA sensing, Proceedings of the National Academy of Sciences, 110 (2013) 16748-16753. https://doi.org/10.1073/pnas.1308885110
[24] S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing, Nature Nanotechnology, 11 (2016) 127-136. https://doi.org/10.1038/NNANO.2015.307
 [25] Y.H. Wang, H.H. Deng, Y.  H. Liu, X.Q. Shi, A.L. Liu, H.P. Peng, G.L. Hong, W. Chen, Partially reduced graphene oxide as highly efficient DNA nanoprobe, Biosensors and Bioelectronics, 80 (2016) 140-145.https://doi.org/10.1016/j.bios.2016.01.052
[26] G. Cuniberti, L. Craco, D. Porath, C. Dekker, Backbone-induced semiconducting behavior in short DNA wires, Physical Review B 65 (2002) 241314. https://doi.org/10.1103/ PhysRevB. 65.241314
[27] S. Alesheikh, N. Shahtahmassebi, M. Rezaee Roknabadi, R. Pilevar Shahri, Silicene nanoribbon as a new DNA sequencing device, Physics Letters A 382 (2018) 595-600. https://doi.org/10.1016/j.physleta.2017.12.010
[28] Kh. Shakouri, H. Simchi, M. Esmaeilzadeh,H. Mazidabadi, F.M. Peeters, Tunable spin and charge transport in silicene nanoribbons, Physical Review B 92 (2015) 035413. https://doi.org/10.1103/PhysRevB.92.035413
[29] C.J. Paez, P.A. Schulz, N.R. Wilson, R.A. Romer, Robust signatures in the current–voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes, New Journal of Physics, 14 (2012) 093049. https://www.njp.org/doi:10.1088/1367-2630/14/ 9/093049
[30] M.P. Lopez Scancho, J.M. Lopez Sancho, J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100), Journal of Physics F: Metal Physics, 14 (1984) 1205. https://doi.org/10.1088/0305-4608/14/5/0 16
[31] T.C. Li, Sh. P. Lu, Quantum conductance of graphene nanoribbons with edge defects, Physical Review B 77 (2008) 085408. https://doi.org/10.1103/PhysRevB.77.085408
[32] K. Ghaderi, F. Khoeini, Theoretical study of electronic conductance in a quantum system with two chain model leads, Journal of Research on Many-body Systems, 3 (1392) 29-39. https://jrmbs.scu.ac.ir/article_10714.html
[33]F. Khoeini, Z. Jafarkhani, M. Khalkhali, Spin transport in a superlattice silicene nanoribbon, Journal of Research on Many-body Systems, 7 (1396) 89-98.
 
[34] F. Khoeini, Combined effect of oriented strain and external magnetic field on electrical properties of superlattice-graphene nanoribbons,Journal of Physics D: Applied Physics, 48 (2015) 405501. https://doi.org/10.1088/0022-3727/48/40/405501