[1] C.D. Manning, H. Schutze, Foundations of Statistical Natural Language Processing, The MIT Press, Cambridge, (1999).
[2] M.W. Berry, J. Kogan, Text Mining Applications and Theory, Wiley, New York, (2010).
[5] P. Carpena, P. Bernaola-Galvan, M. Hackenberg, A.V. Coronado, J.L. Oliver, Level statistics of words: Finding keywords in literary texts and symbolic sequences,
Physical Review E 79 (2009) 035102.
https://doi.org/10.1103/PhysRevE.79.035102
[6] J.P. Herrera, P.A. Pury, Statistical keyword detection in literary corpora, European Physical Journal B 63 (2008) 135-146.
[7] Z. Yang, J. Lei, K. Fan, Y. Lai, Keyword extraction by entropy difference between the intrinsic and extrinsic mode, Physica A 392
[11] G. Zipf, Human Behavior and the Principle of Least Effort: An introduction to Human Ecology, Addison-Wesley Press, Cambridge, (1949).
[13] M. Mezard, A. Montanari, Information, Physics and Computation, Oxford University Press, Oxford, (2009).
[15] D. Baeanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus, world Scientific, Singapore, (2012).
[17] G. Casella, R.L. Berger, Statistical Inference, Wadsworth, California, (1990).
[18] A. Mehri, H. Agahi, H. Mehri-Dehnavi, A novel word ranking method based on distorted entropy,
Physica A: Statistical Mechanics and its Applications,
521 (2019) 484-492. DOI:
https://doi.org/10.1016/j.physa.2019.01.080
[19] D.L. Olson, D. Delen, Advanced Data Mining Techniques, Springer-Verlag, Berlin, (2008).