محاسبه بهره تولید رادیوایزوتوپ 43Sc با استفاده از پرتابه های پروتون، دوترون و آلفا

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک هسته‌ای، دانشکدة فیزیک، دانشگاه یزد، یزد، ایران

چکیده

رادیوایزوتوپ 43Sc با نیمه عمرh 891/3 یک رادیوایزوتوپ مناسب و ایده‌آل برای تصویربرداری PET است. در این مقاله تولید رادیوایزوتوپ 43Sc از طریق واکنش‌های هسته‌ای 43Ca(p,n)43Sc، 44Ca(p,2n)43Sc، 42Ca(d,n)43Sc ، 43Ca(d,2n)43Sc ، 40Ca(α,p)43Sc و 41K(α,2n)43Sc مورد بررسی قرار گرفته است. سطح مقطع این واکنش‌ها با استفاده از کدهای هسته‌ای TALYS1.8 و ALICE ASH 1.0 محاسبه شده و با نتایج تجربی مقایسه شده است. از کد‌های SRIM-2013 و MCNPX2.6 برای محاسبه توان توقف و توزیع شار پرتابه در هدف استفاده شده است. برای هر واکنش بهره تولید تئوری و شبیه‌سازی محاسبه شده است. نتایج بهره تولید برخی از این واکنش‌ها با نتایج تجربی در همان بازه انرژی بهینه انتخابی مقایسه شده است که تطابق نسبتا خوبی بین نتایج تجربی و محاسباتی مشاهده می-شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculation of the production yield of 43Sc radioisotope using proton, deuteron and alpha projectiles

نویسندگان [English]

  • Mansoureh Tatari
  • Motahhareh Dehghani
Physics Department-Faculty of Science-Yazd University-Yazd-Iran
چکیده [English]

The 43Sc radioisotope with a half-life of 3.891 h is an ideal radioisotope for PET imaging. In this paper, the production of 43Sc radioisotope through 43Ca(p,n)43Sc, 44Ca(p,2n)43Sc, 42Ca(d,n)43Sc, 43Ca(d,2n)43Sc, 40Ca(α,p)43Sc and 41K(α,2n)43Sc nuclear reactions have been investigated. The cross-section of these reactions was calculated using the TALYS1.8 and ALICE ASH 1.0 nuclear codes and compared with the experimental results. The SRIM-2013 and MCNPX2.6 codes are used to calculate the stopping power and projectile flux distribution in the target. The theoretical and simulation production yields for each reaction are calculated. The production yield results of some of these reactions are compared with the experimental results at the same optimum energy interval, which shows relatively good agreement between the experimental and computational results.

کلیدواژه‌ها [English]

  • Nuclear reactions
  • 43Sc radioisotope
  • Production yield
  • MCNP2.6 code
  • TALYS1.8 and ALICE ASH 1.0 code
[1] M. Alabyad, G.Y. Mohamed, H.E. Hassan, S. Takács, F. Ditrói, Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc, Journal of Radioanalytical and Nuclear Chemistry 316 (2018) 119-128. https://doi.org/10.1007/s10967-018-5733-4
[2] K. Szkliniarz, M. Sitarz, R. Walczak, J. Jastrzębski, A. Bilewicz, J. Choiński, A. Jakubowski, A. Majkowska, A. Stolarz, A. Trzcińska, W. Zipper, Production of medical Sc radioisotopes with an alpha particle beam, Applied Radiation and Isotopes 118 (2016) 182-189. https://doi.org/10.1016/j.apradiso.2016.07.001
[3] R. Walczak, S. Krajewski, K. Szkliniarz, M. Sitarz, K. Abbas, J. Choiński, A. Jakubowski, J. Jastrzębski, A. Majkowska, F. Simonelli, A. Stolarz, Cyclotron production of 43Sc for PET imaging, EJNMMI physics 2 (2015) 33. 10.1186/s40658-015-0136-x
[4] C. Rangacharyulu, M. Fukuda, H. Kanda, S. Nishizaki, N. Takahashi, Assessment of 43,44Sc isotope production in proton-and alpha-induced reactions,Journal of Radioanalytical and Nuclear Chemistry 314  (2017) 1967-1971. https://doi.org/10.1007/s10967-017-5515-4
[5] T.H. Bokhari, A. Mushtaq, I.U. Khan, Separation of no-carrier-added radioactive scandium from neutron irradiated titanium, Journal of radioanalytical and nuclear chemistry 283 (2010) 389-393. https://doi.org/10.1007/s10967-009-0370-6
[6] K. Minegishi, K. Nagatsu, M. Fukada, H. Suzuki, T. Ohya, M.R. Zhang, Production of scandium-43 and-47 from a powdery calcium oxide target via the nat/44Ca(α,x)-channel, Applied Radiation and Isotopes 116 (2016) 8-12.
[7] T.S. Carzaniga, M. Auger, S. Braccini, M. Bunka, A.Ereditato, K.P. Nesteruk, P. Scampoli, A. Türler, N. van der Meulen, Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron, Applied Radiation and Isotopes 129 (2017) 96-102.
 10.1016/j.apradiso.2017.08.013
[8] M. Sitarz, K. Szkliniarz, J. Jastrzębski, J. Choiński, A. Guertin, F. Haddad, A. Jakubowski, K. Kapinos, M. Kisieliński, A. Majkowska, E. Nigron, Production of Sc medical radioisotopes with proton and deuteron beams, Applied Radiation and Isotopes 142 (2018) 104-112. https://doi.org/10.1016/j.apradiso.2018.09.025
[9] T.S. Carzaniga, N.P. van der Meulen, R. Hasler, C. Kottler, P. Peier, A. Türler, E. Vermeulen, C. Vockenhuber, S. Braccini, Measurement of the 43Sc production cross-section with a deuteron beam, Applied Radiation and Isotopes 145 (2019) 205-208. https://doi.org/10.1016/j.apradiso.2018.12.031
[10] M. Sadeghi, N. Jokar, T. Kakavand, H. G. Fard, C. Tenreiro, Prediction of 67Ga production using the Monte Carlo code MCNPX, Applied Radiation and Isotopes 77 (2013) 14-17. 10.1016/j.apradiso.2013.02.001
[11] M. Eslami, T. Kakavand, Simulation of the direct production of 99mTc at a smallcyclotron, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 329 (2014) 18-21. https://doi.org/10.1016/j.nimb.2014.03.008
[12] S.F. Hosseini, M. Aboudzadeh, M. Sadeghi, A.A. Teymourlouy, M. Rostampour, Assessment and estimation of 67Cu production yield via deuteron induced reactions on natZn and 70Zn, Applied Radiation and Isotopes 127 (2017) 137-141. https://doi.org/10.1016/j.apradiso.2017.05.024
[13] Z. Karimi, M. Sadeghi, M. Rostampour, Assessment and estimation of 65Zn production yield via neutron induced reaction on natZnO and natZnONPs, Applied Radiation and Isotopes 141 (2018) 118-121.
10.1016/j.apradiso.2018.09.002
[14] S.A. Feghhi, Z. Gholamzadeh, Z. Alipoor, A. Zali, M. Joharifard, M. Aref, C. Tenreiro, A benchmark study on uncertainty of ALICE ASH 1.0, TALYS 1.0 and MCNPX 2.6 codes to estimate production yield of accelerator-based radioisotopes, Praman 81 (2013) 87-101.
https://doi.org/10.1007/s12043-013-0554-z

 [15] J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in matter (SRIM Code), (2000). http://www.srim.org

[16] R.C. Fernow, R.C. Fernow, Introduction to experimental particle physics, Cambridge university press, (1989).
https://doi.org/10.1017/CBO9780511622588
[17] V.N. Levkovski, Cross Sections of Medium Mass Nuclide Activation (A= 40–100) by Medium Energy Protons and Alpha Particles (E= 10–50 MeV), Inter-Vesi, Moscow, USSR, (1991).
 https://www-nds.iaea.org
[18] T. Matsuo, T.T. Sugihara, Evidence for Low-Momentum-Transfer Process In K41 (Α, N) Sc44m, G Reactions From Range Measurements of Products, Canadian Journal of Chemistry 39 (1961) 697-705. 10.1139/v61-084
[19] T.J. De Waal, M. Peisach, R. Pretorius, Activation cross sections for proton-induced reaction on calcium isotopes up to 5.6-MeV, Journal of Inorganic and Nuclear Chemistry 33 (1971) 2783-2789. https://doi.org/10.1016/0022-1902(71)80038-6