تکینگی های آتی کیهانی در کیهانشناسی راستال

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه پژوهشی نجوم و اخترفیزیک نظری و تجربی، مرکز تحقیقات نجوم و اخترفیزیک، دانشگاه مراغه، مراغه، ایران

چکیده

در این مقاله، پس از معرفی انواع تکینگی‌هایی که برای آینده کیهان پیش بینی می‌شوند، درآمدی مختصر بر نظریه راستال ارائه می‌شود. در ادامه، با استفاده از معادلات فریدمان متناظر با جهانی تخت در نظریه راستال، امکان حصول تکینگی-های آتی مختلف را در دو حالت بررسی می‌کنیم. ابتدا زمانیکه کیهان با سیالی همگن و همسانگرد که نسبت فشار به چگالی انرژی آن ثابت است و سپس در حالتی که این نسبت همواره ثابت نیست و کیهان با آهنگ خاصی تحول می‌یابد. در حالیکه در حالت اول تکینگی‌ایی برای آینده کیهان پیش بینی نمی‌شود، در حالت دوم برخی از انواع تکینگی امکان وقوع خواهند داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Cosmic future singularities in Rastall cosmology

نویسنده [English]

  • Hooman Moradpour
Astrophysics and Cosmology group, Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran
چکیده [English]

In this paper, after addressing various future singularities, predicted for Cosmos, an introductory note on Rastall theory is provided. Thereinafter, considering a flat Universe, the Friedmann equations of Rastall theory are derived, and the possibility of obtaining various singularities are studied in two cases. In the first case, the cosmic fluid is an isotropic and homogenous fluid while the ratio of its pressure and density is constant. In the second case, the mentioned ratio is not always constant and Universe evolves with a specified rate. The study claims that whereas it is not predicted any future singularity for the first model of cosmos, some types of future singularities may be inevitable in the second one.

کلیدواژه‌ها [English]

  • Cosmology
  • Singularity
  • Rastall theory
[1] M. Roos, Introduction to Cosmology, John Wiley and Sons, UK, (2003).

[2] A.G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, The Astronomical Journal 116 (1998) 1009-1038.

https://doi.org/10.1086/300499

[3] S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, The Astrophysical Journal 517 (1999) 565-586.

https://doi.org/10.1086/307221

[4] P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astronomy and Astrophysics 571 (2014) A16.

[5] S.W. Hawking, R. Penrose, The Nature of Space and TimePrinceton University Press, (2010).
 [6] F.J. Tipler, On the nature of singularities in general relativity, Physical Review D 15 (1997) 942-945.
F.J. Tipler, Singularities in conformally flat spacetimes, Physics Letters A 64 (1977) 8-10.https://doi.org/10.1016/0375-9601(77)90508-4
[7] C.J.S. Clarke, A. Krolak, Conditions for the occurrence of strong curvature singularities,Journal of Geometric and Physics 2 (1985) 127-143.

https://doi.org/10.1016/0393-0440(85)90012-9

 A Krolak, Towards the proof of the cosmic censorship hypothesis, Classical and Quantum Gravity 3 (1986) 267-280.

[8] R.R. Caldwell, A Phantom Menace? Cosmological consequences of a dark energy component with supper-negative equation of state, Physics letters B 545 (2002) 23-29.
[9] J.D. Barrow, Sudden future singularities, Classical and Quantum Gravity 21 (2004) L79-L82.
[10] S. Nojiri, S.D. Odintsov, Final state and themodynamics of a dark energy universe, Physical Review D 70 (2004) 103522.
https://doi.org/10.1103/PhysRevD.70.103522

[11] V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, Tachyons, scalar fields, and cosmology, Physical Review D 69 (2004) 123512.

https://doi.org/10.1103/PhysRevD.69.123512

[12] J.D. Barrow, C.G. Tsagas, New Isotropic and Anisotropic Sudden Singularities, Classical and Quantum Gravity 22 (2005) 1563-1571.

https://doi.org/10.1088/0264-9381/22/9/006

[13] M.P. Dabrowski, T. Denkiewicz, Barotropic index w-singularities in cosmology, Physical Review D 79 (2009) 063521.

https://doi.org/10.1103/PhysRevD.79.063521

[14] D. Pavon, W. Zimdahl, A thermodynamic characterization of future singularities? Physics letters B 708 (2012) 217. https://doi.org/10.1016/j.physletb.2012.01.074

[15] F. Shojai, A. Shojai, M. Sanati, Regularizing future cosmological singularities with varying speed
of light, The European Physical Journal C 75 (2015) 568.
https://doi.org/10.1140/epjc/s10052-015-3796-8

[16] H. Moradpour, R.C. Nunes, E.M. Abreu, J.A. Neto, A note on the relations between thermodynamics, energy definitions and Friedmann equations, Modern Physics Letters A 32 (2017) 1750078.

https://doi.org/10.1142/S021773231750078X

[17] M. Szydłowski, A. Stachowski, Singularities in particle-like description of FRW cosmology, The European Physical Journal C 78 (2018) 552.    

[18] M.P. Dabrowski, K. Marosek, A. Balcerzak, Standard and exotic singularities regularized by varying constants, arXiv:1308.5462.

[19] S. Capozziello, V. Faraoni, Beyond Einstein Gravity, Springer, Dordrecht, (2010); K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophysics and Space Science 342 (2012) 155-228.

https://doi.org/10.1007/s10509-012-1181-8

[20] A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the Cosmological Standard Model, Physics Report 568 (2015) 1-98.

https://doi.org/10.1016/j.physrep.2014.12.002

[21] K. Koyama, Cosmological tests of modified gravity, Reports on Progress in Physics 79 (2016) 046902.
[22] P. Rastall, Generalization of the Einstein theory, Physical Review D 6 (1972) 3357.
https://doi.org/10.1103/PhysRevD.6.3357

[23] T. Koivisto, A note on covariant conservation of energy–momentum in modified gravities, Classical and Quantum Gravity 23 (2006) 4289.

https://doi.org/10.1088/0264-9381/23/12/N01

[24] O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Extra force in f(R) modified theories of gravity, Physical Review D 75 (2007) 104016.

https://doi.org/10.1088/0034-4885/79/4/046902

[25] H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, A generalization to the Rastall theory and cosmic eras, The European Physical Journal C 77 (2017) 259.
[26] F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Einstein and Rastall theories of gravitation in comparison, The European Physical Journal C 78 (2018) 25.
[27] R. Li, J. Wang, Z. Xu, X. Guo, Constraining the Rastall parameters in static space–times with galaxy-scale strong gravitational lensing, Monthly Notices of the Royal Astronomical Society 486 (2019) 2407.
https://doi.org/10.1093/mnras/stz967

[28] A.M.M. Abdel-Rahman, Gravitational Lensing Effects in a Modified General Relativity Model, Astrophysics and Space Science 278 (2001) 383.

https://doi.org/10.1023/A:1013151416526

[29] A.M.M. Abdel-Rahman, M.H.A. Hashim, Gravitational Lensing in A Model With Non-Interacting Matter and Vacuum Energies, Astrophysics and Space Science 298 (2005) 519-523.

https://doi.org/10.1007/s10509-005-5839-3

[30] T. Manna, F. Rahaman, M. Mondal, Solar System test in Rastall gravity, Modern Physics Letters A 35, (2019) 2050034.
https://doi.org/10.1142/S0217732320500340

[31] M. Capone, V.F. Cardone, M.L. Ruggiero, The possibility of an accelerating cosmology in Rastall's theory, Journal of Physics; Conference Series 222 (2010) 012012.

https://doi.org/10.1088/1742-6596/222/1/012012

[32] C.E.M. Batista et al., Rastall cosmology and the Λ CDM modelPhysical Review D 85 (2012) 084008.
https://doi.org/10.1103/PhysRevD.85.084008

[30] A.H. Ziaie, S. Ghaffari, H. Shabani, Effects of Rastall parameter on perturbation of dark sectors of the Universe, arXiv: 1909.12085.

[34] Akarsu Ö. et al., Rastall gravity extension of the standard ΛCDM model: Theoretical features and observational constraints, The European Physical Journal C 80 (2020) 1050.

https://doi.org/10.1140/epjc/s10052-020-08586-4

[35] A.H. Ziaie, H. Moradpour, S. Ghaffari, Gravitational Collapse in Rastall gravity, Physics letters B 793 (2019) 276.
https://doi.org/10.1016/j.physletb.2019.04.055

[36] A.S. Al-Rawaf, O.M. Taha, Cosmology of general relativity without energy-momentum conservation, General Relativity and Gravitation 28 (1996) 935-952.

https://doi.org/10.1007/BF02113090

[37] A.S. Al-Rawaf, Modified GR and Helium NucleosynthesisInternational Journal of Modern Physics D 14 (2005) 1941-1945.
[38] J.C. Fabris, R. Kerner, J. Tossa, Perturbative analysis of generalized Einstein’s theories, International Journal of Modern Physics D 9 (2000) 111-125.
[39] M.P. Dabrowski, K. Marosek, Regularizing cosmological singularities by varying physical constants, Journal of Cosmology and Astroparticle Physics 02 (2013) 012.