[1] M.S. Morris, K.S. Thorne, Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,
American Journal of Physics 56 (1986) 395.
https://doi.org/10.1119/1.15620
##[2] M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Physical Review Letters 61 (1988) 1446. https://doi.org/10.1103/PhysRevLett.61.1446; M. Visser, Lorentzian Wormholes: From Einstein to Hawking, American Institute of Physics, New York (1995).
##[3] M. Visser, S. Kar, N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Physical Review Letters 90 (2003) 201102. https://doi.org/10.1103/PhysRevLett.90.201102
N. Dadhich, S. Kar, S. Mukherjee, M. Visser, R=0 space-times and self-dual Lorentzian wormholes, Physical Review D 65 (2002) 064004. https://doi.org/10.1103/PhysRevD.65.064004
##[4] K.A. Bronnikov, S.-W. Kim, Possible wormholes in a brane world, Physical Review D 67 (2003) 064027. https://doi.org/10.1103/PhysRevD.67.064027; S. Sushkov, Wormholes supported by a phantom energy, Physical Review D 71 (2005) 043520. https://doi.org/10.1103/PhysRevD.71.043520; F. Rahaman, M. Kalam, M. Sarker, K. Gayen, A Theoretical construction of wormhole supported by phantom energy, Physics Letters B 633 (2006) 161. https://doi.org/10.1016/j.physletb.2005.11.080; F.S.N. Lobo, F. Parsaei, N. Riazi, New asymptotically flat phantom wormhole solutions, Physical Review D 87 (2013) 084030.https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.084030
##[5] M. Cataldo, L. Liempi, P. Rodriguez, Static spherically symmetric wormholes with isotropic pressure, Physics Letters B 757 (2016) 130-135. https://doi.org/10.1016/j.physletb.2016.03.057
##[6] K.A. Bronnikov, K.A. Baleevskikh, M.V. Skvortsova, Wormholes with fluid sources: A no-go theorem and new examples, Physical Review D 96 (2017) 124039. https://doi.org/10.1103/PhysRevD.96.124039
##[7] H. Maeda, M. Nozawa, Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity, Physical Review D 78
(2008) 024005. https://doi.org/10.1103/PhysRevD.78.024005
G. Dotti, J. Oliva, R. Troncoso, Static wormhole solution for higher-dimensional gravity in vacuum, Physical Review D 75 (2007) 024002. https://doi.org/10.1103/PhysRevD.75.024002
## [9] A.G. Agnese, M. La Camera, Wormholes in the Brans-Dicke theory of gravitation, Physical Review D 51 (1995) 2011.https://doi.org/10.1103/PhysRevD.51.2011; K.K. Nandi, A. Islam, J. Evans, Brans wormholes, Physical Review D 55 (1997) 2497. https://doi.org/10.1103/PhysRevD.55.2497; F.S.N. Lobo, M.A. Oliveira, General class of vacuum Brans-Dicke wormholes, Physical Review D 81 (2010) 067501; S.V. Sushkov, S.M. Kozyrev, Composite vacuum Brans-Dicke wormholes, Physical Review D 84 (2011) 124026. https://doi.org/10.1103/PhysRevD.84.124026
##[10] E.F. Eiroa, G.F. Aguirre, Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory, European Physical Journal C 72 (2012) 2240. https:// 10.1140/epjc/s10052-012-2240-6; M. Richarte, C. Simeone, Wormholes in Einstein-Born-Infeld theory, Physical Review D 80 (2009) 104033. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.109903
##[11] V.D. Dzhunushaliev, D. Singleton, Wormholes and flux tubes in 5-D Kaluza-Klein theory, Physical Review D 59 (1999) 064018; J.P. de Leon, J. Cosmol., Static wormholes on the brane inspired by Kaluza-Klein gravity, Astroparticle Physics 11 (2009) 013. https://doi.org/10.1088/1475-7516/2009/11/013
##[12] F.S.N. Lobo, M.A. Oliveira, Traversable Wormholes and Energy Conditions with Two Different Shape Functions in f(R) Gravity, Physical Review D 80 104012 (2009) 104012; N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a nonminimal curvature-matter coupling, Physical Review D 82 (2010) 104018; N.M. Garcia, F.S.N. Lobo, Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition, Classical Quantum Gravity 28 (2011) 085018. https://doi.org/10.1088/0264-9381/28/8/085018
##[13] M.R. Mehdizadeh, A.H. Ziaie, Einstein-Cartan wormhole solutions, Physical Review D 95 (2017) 064049. https://doi.org/10.1103/PhysRevD.95.064049
##[14] R. Shaikh, S. Kar, Wormholes, the weak energy condition, and scalar-tensor gravity, Physical Review D 94 (2016) 024011. https://doi.org/10.1103/PhysRevD.94.024011
##[15] Peter Taylor, Propagation of Test Particles and Scalar Fields on a Class of Wormhole Space-Times, Physical Review D 90 (2014) 024057; G.J. Olmo, D. Rubiera-Garcia, A Sanchez-Puente, Geodesic completeness in a wormhole spacetime with horizons, Physical Review D 92 (2015) 044047; Th. Muller,Exact geometric optics in a Morris-Thorne wormhole spacetime, Physical Review D77 (2008) 044043.
https://doi.org/
10.1103/PhysRevD.77.044043
##[16] N. Tsukamoto, T. Harada, K. Yajima,Can we distinguish between black holes and wormholes by their Einstein ring systems, Physical Review D 86 (2012) 104062. https://doi.org/10.1103/PhysRevD.86.104062
##[17] M. Safonova, D.F. Torres, G.E. Romero, Microlensing by natural wormholes: Theory and simulations, Physical Review D 65 (2001) 023001; F. Abe, Demagnifying gravitational lenses toward hunting a clue of exotic matter and energy, Physical Review D 87 (2013) 027501; N. Tsukamoto, T. Harada, Light curves of light rays passing through a wormhole, Physical Review D 95 (2017) 024030. https://doi.org/10.1103/PhysRevD.95.024030
##[18] H. Falcke, F. Melia, E. Agol, Viewing the Shadow of the Black Hole at the Galactic Center, The Astrophysical Journal 528 (2000) L13; P.G. Nedkova,n V.K. Tinchev, S.S. Yazadjiev, Shadow of a rotating traversable wormhole, Physical Review D 88 (2013) 124019; T. Ohgami, N. Sakai, Wormhole shadows, Physical Review D 91 (2015) 124020; A. Abdujabbarov, B. Juraev, B. Ahmedov, Z. Stuchlik, Shadow of rotating wormhole in plasma environment, Astrophysics and Space Science 361 (2016) 226; P.V.P. Cunha, C.A.R. Herdeiro, Shadows and strong gravitational lensing: a brief review, General Relativity and Gravitation 50 (2018) 42. https://doi.org/10.1007/s10714-018-2361-9
##[19] E. Gravanis, S. Willison, Mass without mass' from thin shells in Gauss-Bonnet gravit, Physical Review D 75 (2007) 084025; S. Habib Mazharimousavi, M. Halilsoy and Z. Amirabi, Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet gravity, Physical Review D 81 (2010) 104002. https://doi.org/10.1103/PhysRevD.81.104002
##[20] M. Cataldo, P. Meza, P.Minning, N-dimensional static and evolving Lorentzian wormholes with cosmological constant,Physical Review D 83 (2011) 044050. https://doi.org/10.1103/PhysRevD.83.044050
##[21] S. Sushkov,
Wormholes supported by a phantom energy,
Physical Review D 71 (2005) 043520; F.S.N. Lobo, F. Parsaei, and N. Riazi,
New asymptotically flat phantom wormhole solutions,
Physical Review D 87, (2013) 084030.
https://doi.org/10.1103/PhysRevD.87.084030
##[22] A.V.B. Arellano, F.S.N. Lobo,Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics, Classical Quantum Gravity 23 (2006) 7229. https://doi.org/10.1088/0264-9381/23/24/003; A.V.B. Arellano, N. Breton, R. Garcia-Salcedo, Some properties of evolving wormhole geometries within nonlinear electrodynamics, General Relativity and Gravitation 41 (2009) 2561. https://doi.org/10.1007/s10714-009-0780-3; S.V. Sushkov, Y.-Z. Zhang, Scalar wormholes in cosmological setting and their instability, Physical ReviewD 77 (2008) 024042; A.V.B. Arellano, F.S.N. Lobo,Evolving wormhole geometries within nonlinear electrodynamics, Classical Quantum Gravity 23 (2006) 5811. https://doi.org/10.1088/0264-9381/23/20/004; B.N. Esfahani, The null energy condition in wormholes with cosmological constant, General Relativity and Gravitation 37 (2005) 271; P.K.F. Kuhfittig, Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints, Physical ReviewD 66 (2002( 024015; A.V.B, Arellano, F.S.N. Lobo, Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics, General Relativity and Gravitation 23 (2006) 7229. https://doi.org/10.1088/0264-9381/23/24/003
##[23] M. Cataldo, S. del Campo, Two-fluid evolving Lorentzian wormholes,Physical Review D 85 (2012) 104010; M. Cataldo, P. Meza, Phantom evolving wormholes with big rip singularities,Physical Review D 87 (2013) 064012. https://doi.org/10.1103/PhysRevD.87.064012
##[24] M.R. Bordbar, N. Riazi, Time-dependent wormhole in an inhomogeneous spherically symmetric space time with a cosmological constant, Astrophysics and Space Science 331 (2011) 315. https://doi.org/10.1007/s10509-010-0435-6
##[25] L.A. Anchordoqui, S.E. Perez Bergliaffa, D.F. Torres,
Brans-Dicke wormholes in nonvacuum space-time,
Physical Review D
55 (1997) 5226.
https://doi.org/10.1103/PhysRevD.55.5226
##[26] M.R. Mehdizadeh, N. Riazi, Cosmological wormholes in Lovelock gravity, Physical ReviewD 85 (2012) 124022;
M.R. Mehdizadeh, F.S.N. Lobo, Novel third-order Lovelock wormhole solutions, Physical ReviewD 93 (2016) 124014.
##[27] R.A. D’Inverno
, Introducing Einstein’s Relativity, Oxford University Press, Oxford, (1992).
##[28] T.A. Roman, Inflating Lorentzian wormholes, Physical ReviewD 47 (1993) 1370. https://doi.org/10.1103/PhysRevD.47.1370
##[29] George F.R. Ellis, Malcolm MacCallum, and Roy Maartens, Relativistic Cosmology (1983).
##[30] S. Kar, Evolving wormholes and the weak energy condition, Physical ReviewD 49 (1994) 862; M. Visser, Traversable wormholes from surgically modified Schwarzschild space-times, Nuclear Physics B 328, (1989) 203. https://doi.org/10.1016/0550-3213(89)90100-4
##[31] L.A. Anchordoqui, D.F. Torres, M.L. Trobo, S.E. Perez Bergliaffa, Evolving wormhole geometries, Physical Review D 57 (1998) 829; F.S.N. Lobo. Wormholes, warp drives and energy conditions, volume 189, Springer, (2017); E. Curiel. A primer on energy conditions. In D. Lehmkuhl, G. Schiemann, E. Scholz, editors, Towards a Theory of Spacetime Theories, volume 13, Birkhauser, Basel, (2017) 43-104; S.M. Carroll, Spacetime and geometry Cambridge University Press, (2019).
##[32] M.K. Zangeneh, F.S.N. Lobo, N. Riazi, Higher-dimensional evolving wormholes satisfying the null energy condition, PhysicalReviewD 90 (2014) 024072. https://doi.org/10.1103/PhysRevD.90.024072
##[33] R. Shaikh, S. Kar, Gravitational lensing by scalar-tensor wormholes and the energy conditions, Physical ReviewD96 (2017) 044037. https://doi.org/10.1103/PhysRevD.96.044037
##[34] Kamal Kanti Nandi, Yuan-Zhong Zhang, Alexander V. Zakharov, Gravitational lensing by wormholes ,Physical Review D 74 (2006) 024020; Rajibul Shaikh, Pritam Banerjee, Suvankar Paul, Tapobrata Sarkar, Strong gravitational lensing by wormholes, Journal of Cosmology and Astroparticle Physics 07 (2019) 028. https://doi.org/10.1088/1475-7516/2019/07/028 ; R. Shaikh, P. Banerjee, S. Paul, T. Sarkar, A novel gravitational lensing feature by wormholes, Physics Letters B 789 (2019) 270. https://doi.org/10.1016/j.physletb.2018.12.030
##[35] C. Bambi,Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities,Physical Review D 87 (2013) 107501. https://doi.org/10.1103/PhysRevD.87.107501
##[36] P.G. Nedkova, V.K. Tinchev, S.S. Yazadjiev, Shadow of a rotating traversable wormhole, Physical ReviewD 88 (2013) 124019; R. Shaikh,Shadows of rotating wormholes, Physical ReviewD 98 (2018) 024044. https://doi.org/10.1103/PhysRevD.98.024044
##[37] M. Amir, A. Banerjee, S.D. Maharaj, Shadow images of Kerr-like wormholes,
Annals of Physics 400 (2019) 198. https://doi.org/
10.1088/1361-6382/ab42be