In this paper, we study a family of dynamical wormhole solutions in an inhomogeneous spherically symmetric space time by considering a specific radial dependent redshift function . Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We calculate these classes of solutions for zero separation constant and their scale factor. The rate of expansion of these evolving wormholes is determined only by the standard Friedmann equation in cosmology . We introduce exact asymptotically flat solutions that respect energy conditions at throat. Finally, we investigate the weak energy condition for these solutions with detail
[1] M.S. Morris, K.S. Thorne, Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, American Journal of Physics 56 (1986) 395.https://doi.org/10.1119/1.15620
##[2] M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Physical Review Letters61 (1988) 1446. https://doi.org/10.1103/PhysRevLett.61.1446; M. Visser, Lorentzian Wormholes: From Einstein to Hawking, American Institute of Physics, New York (1995).
##[3] M. Visser, S. Kar, N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Physical Review Letters 90 (2003) 201102. https://doi.org/10.1103/PhysRevLett.90.201102
N. Dadhich, S. Kar, S. Mukherjee, M. Visser, R=0 space-times and self-dual Lorentzian wormholes, Physical Review D 65 (2002) 064004. https://doi.org/10.1103/PhysRevD.65.064004
##[5] M. Cataldo, L. Liempi, P. Rodriguez, Static spherically symmetric wormholes with isotropic pressure, Physics Letters B 757 (2016) 130-135. https://doi.org/10.1016/j.physletb.2016.03.057
##[6] K.A. Bronnikov, K.A. Baleevskikh, M.V. Skvortsova, Wormholes with fluid sources: A no-go theorem and new examples, Physical Review D 96 (2017) 124039. https://doi.org/10.1103/PhysRevD.96.124039
##[7] H. Maeda, M. Nozawa, Static and symmetric wormholes respecting energy conditions in Einstein-Gauss-Bonnet gravity, Physical Review D 78 (2008) 024005. https://doi.org/10.1103/PhysRevD.78.024005
G. Dotti, J. Oliva, R. Troncoso, Static wormhole solution for higher-dimensional gravity in vacuum, Physical Review D 75 (2007) 024002. https://doi.org/10.1103/PhysRevD.75.024002
## [9] A.G. Agnese, M. La Camera, Wormholes in the Brans-Dicke theory of gravitation, Physical Review D 51 (1995) 2011.https://doi.org/10.1103/PhysRevD.51.2011; K.K. Nandi, A. Islam, J. Evans, Brans wormholes, Physical Review D 55 (1997) 2497. https://doi.org/10.1103/PhysRevD.55.2497; F.S.N. Lobo, M.A. Oliveira, General class of vacuum Brans-Dicke wormholes, Physical Review D 81 (2010) 067501; S.V. Sushkov, S.M. Kozyrev, Composite vacuum Brans-Dicke wormholes, Physical Review D 84 (2011) 124026. https://doi.org/10.1103/PhysRevD.84.124026
##[11] V.D. Dzhunushaliev, D. Singleton, Wormholes and flux tubes in 5-D Kaluza-Klein theory, Physical Review D 59 (1999) 064018; J.P. de Leon, J. Cosmol., Static wormholes on the brane inspired by Kaluza-Klein gravity, Astroparticle Physics 11 (2009) 013. https://doi.org/10.1088/1475-7516/2009/11/013
##[12] F.S.N. Lobo, M.A. Oliveira, Traversable Wormholes and Energy Conditions with Two Different Shape Functions in f(R) Gravity, Physical Review D 80 104012 (2009) 104012; N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a nonminimal curvature-matter coupling, Physical Review D 82 (2010) 104018; N.M. Garcia, F.S.N. Lobo, Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition, Classical Quantum Gravity 28 (2011) 085018. https://doi.org/10.1088/0264-9381/28/8/085018
##[14] R. Shaikh, S. Kar, Wormholes, the weak energy condition, and scalar-tensor gravity, Physical Review D 94 (2016) 024011. https://doi.org/10.1103/PhysRevD.94.024011
##[15] Peter Taylor, Propagation of Test Particles and Scalar Fields on a Class of Wormhole Space-Times, Physical Review D 90 (2014) 024057; G.J. Olmo, D. Rubiera-Garcia, A Sanchez-Puente, Geodesic completeness in a wormhole spacetime with horizons, Physical Review D 92 (2015) 044047; Th. Muller,Exact geometric optics in a Morris-Thorne wormhole spacetime, Physical Review D77 (2008) 044043.
##[16] N. Tsukamoto, T. Harada, K. Yajima,Can we distinguish between black holes and wormholes by their Einstein ring systems, Physical Review D 86 (2012) 104062. https://doi.org/10.1103/PhysRevD.86.104062
##[17] M. Safonova, D.F. Torres, G.E. Romero, Microlensing by natural wormholes: Theory and simulations, Physical Review D 65 (2001) 023001; F. Abe, Demagnifying gravitational lenses toward hunting a clue of exotic matter and energy, Physical Review D 87 (2013) 027501; N. Tsukamoto, T. Harada, Light curves of light rays passing through a wormhole, Physical Review D 95 (2017) 024030. https://doi.org/10.1103/PhysRevD.95.024030
##[18] H. Falcke, F. Melia, E. Agol, Viewing the Shadow of the Black Hole at the Galactic Center, The Astrophysical Journal 528 (2000) L13; P.G. Nedkova,n V.K. Tinchev, S.S. Yazadjiev, Shadow of a rotating traversable wormhole, Physical Review D 88 (2013) 124019; T. Ohgami, N. Sakai, Wormhole shadows, Physical Review D 91 (2015) 124020; A. Abdujabbarov, B. Juraev, B. Ahmedov, Z. Stuchlik, Shadow of rotating wormhole in plasma environment, Astrophysics andSpace Science 361 (2016) 226; P.V.P. Cunha, C.A.R. Herdeiro, Shadows and strong gravitational lensing: a brief review, General Relativity and Gravitation 50 (2018) 42. https://doi.org/10.1007/s10714-018-2361-9
##[19] E. Gravanis, S. Willison, Mass without mass' from thin shells in Gauss-Bonnet gravit, Physical Review D 75 (2007) 084025; S. Habib Mazharimousavi, M. Halilsoy and Z. Amirabi, Stability of thin-shell wormholes supported by normal matter in Einstein-Maxwell-Gauss-Bonnet gravity, Physical Review D 81 (2010) 104002. https://doi.org/10.1103/PhysRevD.81.104002
##[20] M. Cataldo, P. Meza, P.Minning, N-dimensional static and evolving Lorentzian wormholes with cosmological constant,Physical Review D 83 (2011) 044050. https://doi.org/10.1103/PhysRevD.83.044050
##[22] A.V.B. Arellano, F.S.N. Lobo,Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics, Classical Quantum Gravity 23 (2006) 7229. https://doi.org/10.1088/0264-9381/23/24/003; A.V.B. Arellano, N. Breton, R. Garcia-Salcedo, Some properties of evolving wormhole geometries within nonlinear electrodynamics, General Relativity and Gravitation 41 (2009) 2561. https://doi.org/10.1007/s10714-009-0780-3; S.V. Sushkov, Y.-Z. Zhang, Scalar wormholes in cosmological setting and their instability, Physical ReviewD 77 (2008) 024042; A.V.B. Arellano, F.S.N. Lobo,Evolving wormhole geometries within nonlinear electrodynamics, Classical Quantum Gravity 23 (2006) 5811. https://doi.org/10.1088/0264-9381/23/20/004; B.N. Esfahani, The null energy condition in wormholes with cosmological constant, General Relativity and Gravitation 37 (2005) 271; P.K.F. Kuhfittig, Static and dynamic traversable wormhole geometries satisfying the Ford-Roman constraints, Physical ReviewD 66 (2002( 024015; A.V.B, Arellano, F.S.N. Lobo, Non-existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics, General Relativity and Gravitation 23 (2006) 7229. https://doi.org/10.1088/0264-9381/23/24/003
##[23] M. Cataldo, S. del Campo, Two-fluid evolving Lorentzian wormholes,Physical Review D 85 (2012) 104010; M. Cataldo, P. Meza, Phantom evolving wormholes with big rip singularities,Physical Review D 87 (2013) 064012. https://doi.org/10.1103/PhysRevD.87.064012
##[24] M.R. Bordbar, N. Riazi, Time-dependent wormhole in an inhomogeneous spherically symmetric space time with a cosmological constant, Astrophysics and Space Science 331 (2011) 315. https://doi.org/10.1007/s10509-010-0435-6
##[29] George F.R. Ellis, Malcolm MacCallum, and Roy Maartens, Relativistic Cosmology (1983).
##[30] S. Kar, Evolving wormholes and the weak energy condition, Physical ReviewD 49 (1994) 862; M. Visser, Traversable wormholes from surgically modified Schwarzschild space-times, Nuclear Physics B 328, (1989) 203. https://doi.org/10.1016/0550-3213(89)90100-4
##[31] L.A. Anchordoqui, D.F. Torres, M.L. Trobo, S.E. Perez Bergliaffa, Evolving wormhole geometries, Physical Review D 57 (1998) 829; F.S.N. Lobo. Wormholes, warp drives and energy conditions, volume 189, Springer, (2017); E. Curiel. A primer on energy conditions. In D. Lehmkuhl, G. Schiemann, E. Scholz, editors, Towards a Theory of Spacetime Theories, volume 13, Birkhauser, Basel, (2017) 43-104; S.M. Carroll, Spacetime and geometry Cambridge University Press, (2019).
##[32] M.K. Zangeneh, F.S.N. Lobo, N. Riazi, Higher-dimensional evolving wormholes satisfying the null energy condition, PhysicalReviewD 90 (2014) 024072. https://doi.org/10.1103/PhysRevD.90.024072
##[33] R. Shaikh, S. Kar, Gravitational lensing by scalar-tensor wormholes and the energy conditions, Physical ReviewD96 (2017) 044037. https://doi.org/10.1103/PhysRevD.96.044037
##[34] Kamal Kanti Nandi, Yuan-Zhong Zhang, Alexander V. Zakharov, Gravitational lensing by wormholes ,Physical Review D 74 (2006) 024020; Rajibul Shaikh, Pritam Banerjee, Suvankar Paul, Tapobrata Sarkar, Strong gravitational lensing by wormholes, Journal of Cosmology and Astroparticle Physics 07 (2019) 028. https://doi.org/10.1088/1475-7516/2019/07/028 ; R. Shaikh, P. Banerjee, S. Paul, T. Sarkar, A novel gravitational lensing feature by wormholes, Physics Letters B 789 (2019) 270. https://doi.org/10.1016/j.physletb.2018.12.030
##[35] C. Bambi,Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities,Physical Review D 87 (2013) 107501. https://doi.org/10.1103/PhysRevD.87.107501
##[36] P.G. Nedkova, V.K. Tinchev, S.S. Yazadjiev, Shadow of a rotating traversable wormhole, Physical ReviewD 88 (2013) 124019; R. Shaikh,Shadows of rotating wormholes, Physical ReviewD 98 (2018) 024044. https://doi.org/10.1103/PhysRevD.98.024044
##[37] M. Amir, A. Banerjee, S.D. Maharaj, Shadow images of Kerr-like wormholes, Annals of Physics400 (2019) 198. https://doi.org/10.1088/1361-6382/ab42be
mehdizadeh, M. R. and poorsolimani, J. (2020). Cosmological wormholes in an Inhomogeneous Spherically Symmetric Space Time. Journal of Research on Many-body Systems, 10(3), 137-155. doi: 10.22055/jrmbs.2020.15928
MLA
mehdizadeh, M. R. , and poorsolimani, J. . "Cosmological wormholes in an Inhomogeneous Spherically Symmetric Space Time", Journal of Research on Many-body Systems, 10, 3, 2020, 137-155. doi: 10.22055/jrmbs.2020.15928
HARVARD
mehdizadeh, M. R., poorsolimani, J. (2020). 'Cosmological wormholes in an Inhomogeneous Spherically Symmetric Space Time', Journal of Research on Many-body Systems, 10(3), pp. 137-155. doi: 10.22055/jrmbs.2020.15928
CHICAGO
M. R. mehdizadeh and J. poorsolimani, "Cosmological wormholes in an Inhomogeneous Spherically Symmetric Space Time," Journal of Research on Many-body Systems, 10 3 (2020): 137-155, doi: 10.22055/jrmbs.2020.15928
VANCOUVER
mehdizadeh, M. R., poorsolimani, J. Cosmological wormholes in an Inhomogeneous Spherically Symmetric Space Time. Journal of Research on Many-body Systems, 2020; 10(3): 137-155. doi: 10.22055/jrmbs.2020.15928