پیامدهای کیهان شناسی انرژی خلاء در نظریه راستال

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه پژوهشی نجوم و اخترفیزیک نظری و تجربی، مرکز تحقیقات نجوم و اخترفیزیک، دانشگاه مراغه، مراغه، ایران

10.22055/jrmbs.2020.15929

چکیده

در این مقاله، مدل انرژی تاریک هولوگرافیک با قطع زیر قرمز هابل را در نظریه راستال در نظر گرفته و رفتار دینامیکی آن را در دو رهیافت بررسی می کنیم. در رهیافت اول، انرژی خلاء را با استفاده از فرمول بندی کوهن به عنوان کاندیدی برای انرژی تاریک (انرژی تاریک هولوگرافیک) در نظر می‌گیریم و پارامترهای کیهان‌شناسی مدل را در دو حالت وجود بر‌هم‌کنش و بدون بر‌هم‌کنش بین ماده تاریک و انرژی تاریک بررسی می‌کنیم. مطالعات نشان می دهد که انرژی خلاء به عنوان انرژی تاریک هولوگرافیک، علیرغم توصیف انبساط شتابدار جهان، پارامتر بدون بعد چگالی انرژی تاریک هولوگرافیک ثابت می‌باشد و همچنین مدل، در حالت بدون بر_هم_کنش، دارای ناپایداری کلاسیکی است. از اینرو رهیافت دوم رامعرفی می‌کنیم که در آن مجموع انرژی خلاء و جمله راستال را به عنوان کاندیدی برای انرژی تاریک در نظر می‌گیریم و رفتار کیهانی را بررسی می‌کنیم. بررسی های نشان می دهد مدل در نظر گرفته شده پارامتر بدون بعد چگالی انرژی تاریک دینامیک می‌باشد. این مدل انبساط تند شونده جهان را به خوبی توصیف کرده و عالم از یک دوره با شتاب کند شونده وارد یک دوره با شتاب تند شونده می شود که این نتایج مطابق با مشاهدات کیهان شناسی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Cosmological implications of vacuum energy in Rastall theory

نویسنده [English]

  • Shayesteh Ghaffari
Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), University of Maragheh, P.O. Box 55136-553, Maragheh, Iran
چکیده [English]

In this paper, we study the cosmic evolution of the holographic dark energy (HDE) model with the Hubble radius as the IR cut-off in the Rastall theory and study its dynamical behavior by two different approaches. In the first approach, we consider the vacuum energy as a candidate for dark energy, HDE, by using Cohen formulation. In the second approach we assume DE as a combination of the Rastall term and vacuum energy. We calculate the cosmological parameters, such as: equation of state, deceleration and the dimensionless density parameters of the models in both non-interacting and interacting cases for both approaches.
Our studies show that, in the first approach HDE model in Rastall gravity can explain the current accelerated Universe even without interaction between two dark sectors. But the dimensionless density parameter model becomes a constant. Therefore we introduce the second approach that its dimensionless density parameter is dynamic and its evolution behavior is in agreement with the recent observational data. We have also find that in this model the Universe has a transition from the decelerated phase to accelerated phase at the redshift which is in the agreement with the cosmological observation. Also, we investigate the classical stability of

کلیدواژه‌ها [English]

  • Holographic dark energy
  • Accelerated Universe
  • Rastall theory
[1] A.G. Riess et al., Observational evidence from supernovae for an accelerating Universe and a cosmological constant, The Astronomical Journal 116 (1998) 1009.
[2] S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift supernovae, The Astrophysical Journal 517 (1999) 565.
[3] S. Perlmutter, et al., New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the hubble space telescope, The Astrophysical Journal 598(2003) 102.
[4] E.J. Colpeland, M. Sami, S. Tusjikawa, Dynamics of dark energy, International Journal of Modern Physics D 15 (2006) 11
[5] A.G. Cohen, et al., Effective Field Theory, black holes, and the cosmological constant, Physical Review Letters 82 (1999) 4971.
[6] B. Guberina, R. Horvat, H. Nikolić, Non-saturated holographic dark energy, Journal of Cosmological And Astroparticle Physics 01(2007) 012.
[7] P. Horava, D. Minic, Probable values of the cosmological constant in a holographic theory, Physical Review Letters 85 (2000) 1610.
[8] S. Thomas, Holography stabilizes the vacuum energy, Physical Review. Letters 89(2002) 081301.
[9] S.D.H. Hsu, Entropy bounds and dark energy, Physics Letters B 594(2004) 13.
[10] M. Li, A Model of Holographic dark energy, Physics Letters B 603(2004) 1.
[11] A. Sheykhi, Holographic scalar field models of dark energy, Physical Review D 84, (2011) 107302;
C.J. Gao, X.L. Chen, Y.G. Shen, Holographic dark energy model from Ricci scalar curvature, Physical Review D 79, (2009) 04351;
R.G. Cai, B. Hu, Y. Zhang, Holography, UV/IR relation, causal entropy bound, and dark energy, Communications in Theoretical Physics 51, (2009) 954.
[12] L.N. Granda, A. Oliveros, Infrared cut-off proposal for the Holographic density, Physics Letters B 669(2008) 275.
L.N. Granda, A. Oliveros, New infrared cut-off for the holographic scalar fields models of dark energy, Physics Letters B 671 (2009) 199-202.
[13] D. Pavon, W. Zimdahl, Holographic dark energy and cosmic coincidence, Physics Letters. B 628(2005) 206-210.
W. Zimdahl, D. Pavon, stability analysis of a Tsallis holographic dark energy model, Classical and Quantum Gravity 24(2007) 5461.
[14] P. Rastall, Generalization of the Einstein theory Physical Review D 6, (1972) 3357.
[15] C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Rastall cosmology and the ΛCDM model, Physical Review D 85, 084008 (2012);
J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Rastall cosmology, International Journal of Modern Physics: Conference Series 18 (2012) 67-76.
[16] H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, A generalization to the Rastall theory and cosmic eras, The European Physics Journal. C 77 (2017) 259.
[17] M. Roos, Introduction to cosmology, John Wiley and Sons, UK (2003).
[18] H. Moradpour et al., Accelerated cosmos in a nonextensive setup, Physical Review D 96, (2017) 123504.
04
[19] H. Moradpour, I.G. Salako, Thermodynamic analysis of the static spherically symmetric field equations in Rastall theory, Advances in High Energy Physics2016 (2016) 3492796.
[20] P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy, Reviews of Modern Physics 75 (2003) 559.
[21] F.F. Yuan, P. Huang, Emergent cosmic space in Rastall theory, Classical and Quantum Gravity 34 (2017) 077001.
[22] R.A. Daly et al., Improved constraints on the acceleration history of the Universe and the properties of the dark energy, The Astrophysical Journal 677 (2008) 1.
E. Komatsu et al. [WMAP Collaboration], Seven-year Wilkinson microwave anisotropy probe (WPAM) observations cosmological interpretation, The Astrophysical Journal Supplement series 192 (2011) 18.
[23] D. Pavon, W. Zimdahl, Holographic dark energy and cosmic coincidence, Physics Letters B 628 (2005) 206.
[24] O. Bertolami, F. Gil Pedro, M. Le Delliou, Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586, Physics Letters B 654 (2007) 165.
O. Bertolami, F. Gil Pedro, M. Le Delliou, The Abell cluster A586 and the detection of violation of the equivalence principle General Relativity and Gravitation 41, (2009) 2839.
[25] E. Abdalla et al., Signature of the interaction between dark energy and dark matter in galaxy clusters Physics Letters B 673 (2009) 107.
B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures, Reports on Progress in Physics 79 (2016) 096901.
[26] E. Abdala, L.R. Abramo, J.C.C. de Souza, Signature of the interaction between dark energy and dark matter in observations, Physical Review D 82 (2010) 023508;
L. Amendola, Coupled quintessence, Physical Review D 62 (2000) 043511.
S. Chen, B. Wang, J. Jing, Dynamics of an interacting dark energy model in Einstein and loop quantum cosmology, Physical Review D 78 (2008) 123503.