بررسی نحوه تغییرات انرژی و انتشارغیرخطی امواج غبار یون صوت در پلاسمای غباری چند مولفه ای مغناطیده

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشگاه آزاد اسلامی واحد یادگار امام خمینی (ره) شهرری، تهران، ایران

10.22055/jrmbs.2020.15930

چکیده

انتشار غیرخطی امواج غبار- یون –صوتی و انرژی آن در یک پلاسمای غباری مغناطیده متشکل از الکترون‌ها وپوزیترون‌های کوانتومی و فاقد اینرسی با تابع توزیع فرمی-دیراک، یون‌های سرد و غیر کوانتومی و ذرات غبار با بار منفی متغیر با استفاده از نظریه هیدرودینامیک کوآنتومی مورد بررسی قرار گرفت. با استفاده از نظریه اختلال کاهشی، معادله زاخاروف-کوزنسوف(Zakharov-Kuznetsov) ، که حاکم بر امواج سالیتونی با دامنه کوچک در پلاسمای غباری مغناطیده است، استخراج گردید. ویژگی های ساختار و انرژی امواج سالیتونی با استفاده از پارامترهای سیستم مورد تحلیل قرار گرفت. که برای نشان دادن این موضوع ، رفتار موج غبار- یون-صوتی و همچنین انرژی آن را برای مقادیر متفاوت (نسبت فرکانس سیکلوترونی الکترون به فرکانس پلاسما)، d (چگالی غبار)، H (پارامترکوآنتومی بدون بعد )، l( کسینوس جهتگیری انتشار بردار موج) ، با ثابت نگه داشتن پارامترهای دیگر پلاسما مورد مطالعه قرار دادیم. نتایج این تحقیق می تواند برای تحقیقات پلاسمای غباری اختر فیزیکی مفید باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the variation of energy and nonlinear propagation of dust ion-acoustic waves in multi component magnetized dusty plasma

نویسنده [English]

  • maryam ghasemloo
چکیده [English]

Nonlinear propagation and energy of dust ion acoustic waves in magnetized dusty plasma with Fermi-Dirac distributed inertia less electrons and positrons, cold classical ions and negative dust grains which are affected by dust charge variations, are studied using the quantum hydrodynamic theory. The Zakharov-Kuznetsov (ZK) equation is derived by employing the reductive perturbation technique which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the energy and solitary wave structures are analyzed numerically with the system parameters .To show these we study the behavior of dust ion acoustic wave as well as its energy for several values of the electron cyclotron to electron plasma frequency ratio ( ), dust concentration (d), non dimensional quantum parameter (H) and the direction cosine of the wave propagation vector with the Cartesian coordinates (l), keeping the other plasma parameters fixed. The results of the present research can be useful for future investigations of astrophysical dusty plasma.

کلیدواژه‌ها [English]

  • Soliton
  • Dusty plasma
  • Zakharov-Kuznetsov equation
  • Dust ion acoustic solitary wave
  • Fermi-Dirac distribution function
[1] D. Kremp, M. Schlanges, W.D. Kraft, Quantum Statistics of Nonideal Plasmas, Springer, Berlin (2005).##

[2] A.V. Andreev, Self-consistent equations for the interaction of an atom with an electromagnetic field of arbitrary intensityJournal of Experimental and Theoretical Physics Letters72 (2000) 238-240.##[3] M. Marklund, P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Reviews of Modern Physics 78 (2006) 591 doi: 10.1103/RevModPhys.78.591##

[4] I. Gasser, Quantum Hydrodynamics, Ph.D Thesis, Technical University of Berlin, Germany (1996).##
[5] M. Ghasemloo, M. Ghoranneviss, M.K. Salem, R. Arvin, S. Mohammadi, A. Nik Mohammadi, The effect of emissive biased limiter on the magnetohydrodynamic modes in the IR-T1 tokamak, Physics of Plasmas 20 (2013) 032503. https://doi.org/10.1063/1.4791658
##[6] M. Ghasemloo, M. Ghoranneviss, A. SalarElahi, M.K. Salem, Design and fabrication of emissive biased limiter and its effect on tokamak plasma , Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology 168 (2013) 42. https://doi.org/10.1080/10420150.2012.706610
##[ 7] M. Ghasemloo, M. Ghoranneviss, M.K. Salem, The Effect of Biased Limiter on the Magnetic Island Width in Tokamak Plasma, Journal of Plasma Physics 80 (2014) 113. doi: 10.1017/S0022377813001190
##[8] M. Ghasemloo , M. Ghoranneviss, A. Salarelahi, Measurment of Safety Factor and Poloidal Beta by Design and Fabrication of Emissive Limiter Bias in IR-T1 Tokamak, Journal of Nuclear and Particle Physics 2(2012) 22-25. doi: 10.5923/j.jnpp.20120202.05
##[9] M.J. Iqbal, Ph.D Thesis, Nonlinear Wave Propagation in Quantum Degenerate Plasmas, Reg. No. 2012-PHD-PHY-30, Department of Physics GC University Lahore (2019).

##[10] F. Hass, L.G. Garcia, J. Goedert, G.Manfredi, Quantum ion-acoustic wavesPhysics of Plasmas 10 (2003) 3858. https://doi.org/10.1063/1.1609446

##[11] P.K. Shukla, Low-frequency modes in dusty plasmas, Physica Scripta 45 (1992) 508. https://doi.org/10.1088/0031-8949/45/5/014

##[12] A. Barken, N.D. Angelo, R.L. Merlino, Experiments on ion-acoustic waves in dusty plasmas, Planetary and Space Science 44 (1996) 239. https://doi.org/10.1016/0032-0633(95)00109-3
##[13] P.A. Markowich, C.A .Ringhofer, C. Schmeiser, Semiconductorequations, Springer, Berlin (1990).

##[14] P.K. Shukla, N.N. Rao, M.Y. Yu, N.L. Tsintsadze, Relativistic nonlinear effects in plasmas, Physics Reports 1 (1986) 138. https://doi.org/10.1016/0370-1573(86)90157-2

##[15] G .Chabrier, E .Douchin, Y .Potekhin, Dense astrophysical plasmas, plasmas. Journal of Physics: Condensed Matter14 (2002) 9133. https://doi.org/10.1088/0953-8984/14/40/307

##[16] G. Manfredi, F. Hass, Self-consistent fluid model for a quantum electron gas, Physical Review B 64 075316 (2001). doi: 10.1103/PhysRevB.64.075316

##[17] G. Manfredi, How to model quantum plasmas, Fields Inst. Commun46, (2005) 263.

##[18] S.A. Khan, M. Bonitz, Quantum Hydrodynamics, Chapter in Book Complex Plasmas: Scientific Challenges and Technological Opportunities Editors: M. Bonitz, K. Becker, J. Lopez, H. Thomsen, Springer, Heidelberg (2014) 103-152.

##[19] M. Masud, N.R. Kundu, A.A. Mamun, Obliquely propagating dust–ion acoustic solitary waves and their multidimensional instabilities in magnetized dusty plasmas with bi-maxwellianelectrons, The Canadian Journal of Physics 91 7 (2013) 530-536.  https://doi.org/10.1139/cjp-2012-0390

##[20] T. Saha, P. Chatterjee, Obliquely propagating ion acoustic solitary waves in magnetized dusty plasma in the presence of nonthermal electrons, Physics of Plasmas 16 (2009) 013707. https://doi.org/10.1063/1.3067824

##[21] H.R Pakzad, Soliton energy of the Kadomtsev–Petviashvili equation in warm dusty plasma with variable dust charge, two-temperature ions, and nonthermal electrons, Astrophysics and Space Science 326 1 (2010) 69-75. doi: 10.1007/s10509-009-0196-2

##[22] E.K. El-ShewyM.I. Abo el MaatyH.G. AbdelwahedM.A. Elmessary, Solitary solution and energy for the Kadomstev–Petviashvili equation in two temperatures charged dusty grains, Astrophysics and Space Science 332 (2011) 179-186. doi: 10.1007/s10509-010-0492-x

##[23] B. Sahu, N.K. Ghosh, Kadomstev-Petviashvili solitons in quantum plasmasAstrophysics and Space Science 343 (2013) 289–292. doi10.1007/s10509-012-1246-8
##[24] U.K. Samanta, A. Saha, P. Chatterjee, Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution, Physics of Plasmas20 b (2013) 022111. https://doi.org/10.1063/1.4791660
##[25] U.K. Samanta, A. Saha, P.Chatterjee, Bifurcations of nonlinear ion acoustic travelling waves in the frame of aZakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron, Physics of Plasmas 20 c (2013) 052111.  https://doi.org/10.1063/1.4804347

##[26] U.K.Samanta, A. Saha, P.Chatterjee, Bifurcations of dust ion acoustic travelling waves in a magnetized quantum dusty plasma, Astrophysics and Space Science 347 d(2013) 293. doi: 10.1007/s10509-013-1529-8

##[27] A. Saha, P.Chatterjee, Bifurcations of electron acoustic traveling waves in an unmagnetized quantum plasma with cold and hot electrons, Astrophysics and Space Science 349 a (2014) 239-244. https://link.springer.com/article/10.1007/s10509-013-1646-4

##[28] A. Saha, P. Chatterjee, Dust ion acoustic travelling waves in the framework of a modified Kadomtsev-Petviashvili equation in a magnetized dusty plasma with superthermal electrons, Astrophysics and Space Science 349 b(2014) 813-820. https://link.springer.com/article/10.1007/s10509-013-1685-x

##[29] A. Saha, P. Chatterjee, Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with nonextensive ions, Astrophysics and Space Science 351 c(2014) 533-537. doi: 10.1007/s10509-014-1849-3

##[30] A. Saha, P. Chatterjee, New analytical solutions for dust acoustic solitary and periodic waves in an unmagnetized dusty plasma with kappa distributed electrons and ions, Physics of Plasmas 21 d (2014) 022111. https://doi.org/10.1063/1.4864626

##[31] R. Bharuthram, P.K. Shukla, Large amplitude ion-acoustic solitons in a dusty plasma, Planetary and Space Science 40 (1992) 973-977. https://doi.org/10.1016/0032-0633(92)90137-D

##[32] M.T. Attia, M.A. Zahran, E.K. El-Shewy, A.E. Mowafy, Contribution of Higher-Order Dispersion to Nonlinear Dust Ion Acoustic Waves in Inhomogeneous Mesospheric Dusty Plasma with Dust Charge Fluctuation, Zeitschrift für Naturforschung 65 (2010) 91-99.  doi: https://doi.org/10.1515/zna-2010-1-210

##[33] T.K. Baluku, M.A. Hellberg, I. Kourakis, N.S. Saini, Dust ion acoustic solitons in a plasma with kappa-distributedelectrons, Physics of Plasmas 17 (2010) 053702.  https://doi.org/10.1063/1.3400229

##[34] F. Sayed, M.M. Haider, A.A. Mamun, P.K. Shukla, B. Elisson, N. Adhikary, Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ionsPhysics of Plasmas 15 (2008) 063701.  https://doi.org/10.1063/1.2920212

 ##[35] P.K. Shukla, A.A, Mamun, Introduction to Dusty Plasma Physics, Institute of physics, Bristol (2002).

##[36] H. Alinejad, Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons, Astrophysics and Space Science327 (2010) 131. https://link.springer.com/article/10.1007/s10509-010-0296-z

##[37] S. Ghosh, S. Sarkar, M. Khan, M.R. Gupta, Dust ion acoustic shock waves in a collisionless dusty plasma,Physics Letters A 274 (2000) 162. https://doi.org/10.1016/S0375-9601(00)00537-5

##[38] R. Lundin, L. Eliasson, B. Hultqvist, K. Stasiewicz, Plasma energization on auroral field lines as observed by the Viking spacecraft, Geophysical Research Letters 14 (1987) 443.  https://doi.org/10.1029/GL014i004p00443

##[39] T.S. Gill, H. Kaur, S. Bansal, N.S. Saini, P. Bala, Modulational instability of electron-acoustic waves: an application to auroral zone plasma, The European Physical Journal D 41 (2007)151- 156. https://link.springer.com/article/10.1140/epjd/e2006-00198-7

##[40] F.F. Chen, Plasma Diagnostic Techniques, New York,Academic(1965).
##[41] S.S Duha, B. Shikha, A.A. Mamun, onlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons, Pramana–Journal of Physics 77(2011) 357–368. DOI: 10.1007/s12043-011-0102-7
##[42] N. Pishbin, M.R. Rouhani, N. Alinejad, Specifications of dust-ion-acoustic shock waves affected by dust charge variation in four component dissipative quantum plasma, radiation effects and defects in solids 174 (2019) 349-364. https://www.tandfonline.com/doi/abs/10.1080/10420150.2019.1596103
##[43] N. Pishbin, M.R. Rouhani,The tanh solution of KdV-B equation in four-component quantum plasma by taking into account dust charge variation, Physics of plasmas 24 (2017) 123702. https://aip.scitation.org/doi/10.1063/1.5005586