بررسی رمبش گرانشی غیر-تکین در نظریه راستال تعمیم یافته

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه پژوهشی نجوم و اخترفیزیک نظری و تجربی، مرکز تحقیقات نجوم و اخترفیزیک، دانشگاه مراغه، مراغه، ایران

10.22055/jrmbs.2020.15931

چکیده

در این مقاله، به بررسی فرایند رمبش گرانشی یک سیال غبار-گونه همگن در نظریه گرانشی راستال تعمیم یافته می پردازیم. در این نظریه پارمتر جفت شدگی راستال متغیر است و از آنجاییکه این پارامتر نماینده میزان برهمکنش دوطرفه بین ماده و هندسه است، لذا انتظار می رود که یک چنین برهمکنش متغیری در دینامیک رمبش و محصول نهایی آن تاثیرگذار باشد. با الهام گرفتن از این ایده، به دنبال حلهای رمبش غیر-تکین برای فضازمان داخلی یک غبار در حال رمبش می گردیم. مشاهده می کنیم که انتخاب مناسبی از تابعیت پارامتر جفت شدگی، این امکان را فراهم می سازد بطوریکه تکینگی فضازمانی حاضر در مدل رمبش غبار همگن با یک جهش غیر تکین که در آن چگالی انرژی و انحنای فضازمان متناهی است جایگزین می گردد. همچنین مشاهده می شود که اثرات این جفت شدگی متغیر روی دینامیک افق ظاهری تاثیر دارد به گونه ای که برخلاف حالت تکین که در آن افق ظاهری تکینگی فضازمانی را می پوشاند، در حالت غیر-تکین تشکیل افق ظاهری به تاخیر افتاده و یا اینکه تشکیل نمی گردد و بنابراین امکان مشاهده توده درحال جهش توسط ناظر های خارجی وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Non-Singular gravitational collapse in generalized Rastall theory

نویسنده [English]

  • Amir Hadi Ziaie
Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), University of Maragheh, P.O. Box 55136-553, Maragheh, Iran
چکیده [English]

In the present work we study the process of gravitational collapse of a homogeneous dust in the framework of generalized Rastall gravity. In this theory, the Rastall coupling parameter is a variable and since this parameter represents the measure of mutual interaction between matter and geometry it is expected that such an interaction affects the collapse dynamics and its end product. Motivated by this idea, we search for non-singular solutions for the interior spacetime of the collapsing dust fluid. We observe that this scenario is feasible for a suitable choice of the functionality of the coupling parameter such that the singularity present in homogeneous dust collapse is replaced by a non-singular bounce where the energy density and spacetime curvature are finite. We also observe that such a variable coupling affects the dynamics of apparent horizon so that, in comparison to the singular case where the apparent horizon covers the spacetime singularity, the apparent horizon can be delayed or failed to form providing thus the possibility of detecting the bouncing object by external observers.

کلیدواژه‌ها [English]

  • Gravitational collapse
  • Spacetime singularity
  • Singularity avoidance
  • Modified gravity
1] S.W. Hawking, G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge, (1994). 
[2] J.M.M. Senovilla, D. Garfinkle, The 1965 Penrose singularity theorem, Classical and Quantum Gravity 32 (2015) 124008 1-45. https://doi.org/10.1088/0264-9381/32/12/124008           
[3] D.C. Moore, Trends in Quantum Gravity Research, Nova Science Publishers, New York, (2006).
[4] J. Plebanski, A. Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press, Cambridge (2006).  
[5] H. Kragh, M. Longair, The Oxford Handbook of the History of Modern Cosmology, Oxford, (2019).
[6] J.R. Oppenheimer, H. Snyder,On Continued Gravitational Contraction, Physical Review 56 (1939) 455-459. https://doi.org/10.1103/PhysRev.56.455             
[7] R. Penrose, Gravitational collapse: The role of general relativity, Rivista del Nuovo Cimento 1 (1969) 252-276; https://doi.org/10.1023/A:1016578408204 
[8] C.J.S. Clarke, Singularities: Global and Local Aspects. In: P.G. Bergmann V. De Sabbata (eds) Topological Properties and Global Structure of Space-Time. NATO ASI Series (Series B: Physics). Springer, Boston, MA (1986). 
[9] R.M. Wald, Gravitational Collapse and Cosmic Censorship, arXiv:gr-qc/9710068.
[10] R.M. Wald, Black Holes and Relativistic Stars, University of Chicago Press (1998).
[11] P.S. Joshi, Gravitational Collapse and Spacetime Singularities, Cambridge University Press, (2007).
[12] A. Ashtekar, J. Stachel, Conceptual Problems of Quantum Gravity, Birkhauser Boston, (1991).
 
[13] C. Bambi, D. Malafarina, L. Modesto, Non-singular quantum-inspired gravitational collapse, Physical Review D 88 (2013) 044009. https://doi.org/10.1103/PhysRevD.88.044009
 
[14] A.H. Ziaie, P.V. Moniz, A. Ranjbar, H.R. Sepangi, Einstein-Cartan gravitational collapse of a homogeneous Weyssenhoff fluid, European Physical Journal C 74 (2014) 3154. https://doi.org/10.1140/epjc/s10052-014-3154-2
 
[15] M. Hashemi, S. Jalalzadeh, A.H. Ziaie, Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory, European Physical Journal C 75 (2015) 53. https://doi.org/10.1140/epjc/s10052-015-3276-1
 
[16] Y. Tavakoli, C.E.-Rivera, J.C. Fabris, The final state of gravitational collapse in Eddington-inspired Born-Infeld theory, Annalen der Physik, 529 (2017) 1600415.
 
[17] L.R. Abramo, I. Yasuda, P. Peter, Nonsingular bounce in modified gravity, Physical Review D 81 (2010) 023511. https://doi.org/10.1103/PhysRevD.81.023511
 
[18] C. Bambi, D. Malafarina, A. Marciano, L. Modesto, Singularity avoidance in classical gravity from four-fermion interaction, Physics Letters B 734 (2014) 27-30. https://doi.org/10.1016/j.physletb.2014.05.013
 
[19] P. Rastall, Generalization of the Einstein Theory, Physical Review D 6 (1972) 3357.
 
[20] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, (1984).
 
[21] G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Physical Review D 15 (1977) 2738.
 
[22] O. Minazzoli, Conservation laws in theories with universal gravity/matter coupling, Physical Review D 88 (2013) 027506.
 
[23] T. Koivisto, Covariant conservation of energy momentum in modified gravities, Classical and Quantum Gravity 23 (2006) 4289-4296.
 
[24] H. Shabani, A.H. Ziaie, A connection between Rastall-type and f(R,T) gravities, Europhysics Letters 129 (2020) 20004. https://orcid.org/0000-0002-2309-3591
 
[25] C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Rastall cosmology and the ΛCDM model, Physical review D 85 (2012) 084008.
 
[26] A.-M.M. Abdel-Rahman, Modified General Relativity and Cosmology, General Relativity and Gravitation 29 (1997) 1329-1343. https://doi.org/10.1023/A:1018872015607
 
[27] C.E.M. Batista, J.C. Fabris, O.F. Piattella, A.M.V.-Toribio, Observational constraints on Rastall's cosmology, European Physical Journal C 73 (2013) 2425.
 
[28] H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, A Generalization to the Rastall Theory and Cosmic Eras, European Physical Journal C 77 (2017) 259.
 
[29] A.S. Al-Rawaf, M.O. Taha, Cosmology of general relativity without energy-momentum conservation, General Relativity and Gravitation 28 (1996) 935–952. https://doi.org/10.1007/BF02113090
 
[30] A.S. Al-Rawaf, Modified GR and Helium Nucleosynthesis, International Journal of Modern Physics D 14 (2005) 1941-1945.
 
[31] S. Hansraj, A. Banerjee, P. Channuie, Impact of the Rastall parameter on perfect fluid spheres, Annals of Physics 400 (2019) 320-345. https://doi.org/10.1016/j.aop.2018.12.003
 
[32] A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Neutron Stars in Rastall Gravity, Physical Review D 92 (2015) 044020.
 
[33] G. Abbas, M.R. Shahzad, A new model of quintessence compact stars in the Rastall theory of gravity, European Physical Journal A 54 (2018) 211.
 
[34] G. Abbas, M.R. Shahzad, Comparative analysis of Einstein gravity and Rastall gravity for the compact objects, Chinese Journal of Physics 63 (2020) 1-12.
 
[35] T. Manna, F. Rahaman, M. Mondal, Solar system tests in Rastall gravity, Modern Physics Letters A 35 (2020) 2050034.
 
[36] A.-M.M. Abdel-Rahman, M.H.A. Hashim, Gravitational Lensing in A Model With Non-Interacting Matter and Vacuum Energies Astrophysics and Space Science 298 (2005) 519-523. https://doi.org/10.1007/s10509-005-5839-3
 
[37] A.-M.M. Abdel-Rahman, Gravitational Lensing Effects in a Modified General Relativity Model, Astrophysics and Space Science 278 (2001) 385.
 
[38] R. Li, J. Wang, Z. Xu, X. Guo, Constraining the Rastall parameters in static space–times with galaxy-scale strong gravitational lensing, Monthly Notices of the Royal Astronomical Society 486 (2019) 2407-2411.
[39] F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Einstein and Rastall theories of gravitation in comparison, European Physical Journal C 78 (2018) 25. https://doi.org/10.1140/epjc/s10052-017-5502-5
 
[40] A.H. Ziaie, H. Moradpour, S. Ghaffari, Gravitational Collapse in Rastall Gravity, Physics Letters B793 (2019) 276.
 
[41] S.A. Hayward, Quasi-Local Gravitational Energy, Physical Review D 49 (1994) 831-839. https://doi.org/10.1103/PhysRevD.49.831
 
[42] S.A. Hayward, General laws of black-hole dynamics, Physical Review D 49 (1994) 6467.
 
[43] S.A. Hayward, Gravitational energy in spherical symmetry, Physical Review D 53 (1996) 1938.
 
[44] C. Bambi, Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, Springer, (2016).
 
[45] P.C. Vaidya, An Analytical Solution for Gravitational Collapse with Radiation, Astrophysical Journal 144 (1966) 943.
https://ui.adsabs.harvard.edu/link_gateway/1966ApJ...144..943V/doi:10.1086/148692
 
[46] J.B. Griffiths, J. Podolsky, Exact Space-Times in Einstein's General Relativity, Cambridge University Press (2009).
 
[47] A. Wang, Y. Wu, Generalized Vaidya Solutions, General Relativity and Gravitation 31 (1999) 107-114.
https://doi.org/10.1023/A:1018819521971
 
[48] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento B 44, (1966) 1–14.
[49] M. Hashemi, S. Jalalzadeh, A.H. Ziaie, Collapse and dispersal of a homogeneous spin fluid in Einstein–Cartan theory, European Physical Journal C 75 (2015) 53.
 
[50] F. Haardt, V. Gorini, U. Moschella, A. Treves, M. Colpi, Astrophysical Black Holes, Springer, (2015).