1] S.W. Hawking, G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge, (1994).
[3] D.C. Moore, Trends in Quantum Gravity Research, Nova Science Publishers, New York, (2006).
[4] J. Plebanski, A. Krasinski, An Introduction to General Relativity and Cosmology, Cambridge University Press, Cambridge (2006).
[5] H. Kragh, M. Longair, The Oxford Handbook of the History of Modern Cosmology, Oxford, (2019).
[7] R. Penrose, Gravitational collapse: The role of general relativity, Rivista del Nuovo Cimento 1 (1969) 252-276; https://doi.org/10.1023/A:1016578408204
[8] C.J.S. Clarke, Singularities: Global and Local Aspects. In: P.G. Bergmann V. De Sabbata (eds) Topological Properties and Global Structure of Space-Time. NATO ASI Series (Series B: Physics). Springer, Boston, MA (1986).
[9] R.M. Wald, Gravitational Collapse and Cosmic Censorship, arXiv:gr-qc/9710068.
[10] R.M. Wald, Black Holes and Relativistic Stars, University of Chicago Press (1998).
[11] P.S. Joshi, Gravitational Collapse and Spacetime Singularities, Cambridge University Press, (2007).
[12] A. Ashtekar, J. Stachel, Conceptual Problems of Quantum Gravity, Birkhauser Boston, (1991).
[16] Y. Tavakoli, C.E.-Rivera, J.C. Fabris, The final state of gravitational collapse in Eddington-inspired Born-Infeld theory, Annalen der Physik, 529 (2017) 1600415.
[19] P. Rastall, Generalization of the Einstein Theory, Physical Review D 6 (1972) 3357.
[20] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, (1984).
[21] G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Physical Review D 15 (1977) 2738.
[22] O. Minazzoli, Conservation laws in theories with universal gravity/matter coupling, Physical Review D 88 (2013) 027506.
[23] T. Koivisto, Covariant conservation of energy momentum in modified gravities, Classical and Quantum Gravity 23 (2006) 4289-4296.
[25] C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Rastall cosmology and the ΛCDM model, Physical review D 85 (2012) 084008.
[27] C.E.M. Batista, J.C. Fabris, O.F. Piattella, A.M.V.-Toribio, Observational constraints on Rastall's cosmology, European Physical Journal C 73 (2013) 2425.
[28] H. Moradpour, Y. Heydarzade, F. Darabi, Ines G. Salako, A Generalization to the Rastall Theory and Cosmic Eras, European Physical Journal C 77 (2017) 259.
[29] A.S. Al-Rawaf, M.O. Taha, Cosmology of general relativity without energy-momentum conservation,
General Relativity and Gravitation 28 (1996) 935–952.
https://doi.org/10.1007/BF02113090
[30] A.S. Al-Rawaf, Modified GR and Helium Nucleosynthesis, International Journal of Modern Physics D 14 (2005) 1941-1945.
[32] A.M. Oliveira, H.E.S. Velten, J.C. Fabris, L. Casarini, Neutron Stars in Rastall Gravity, Physical Review D 92 (2015) 044020.
[33] G. Abbas, M.R. Shahzad, A new model of quintessence compact stars in the Rastall theory of gravity, European Physical Journal A 54 (2018) 211.
[34] G. Abbas, M.R. Shahzad, Comparative analysis of Einstein gravity and Rastall gravity for the compact objects, Chinese Journal of Physics 63 (2020) 1-12.
[35] T. Manna, F. Rahaman, M. Mondal, Solar system tests in Rastall gravity, Modern Physics Letters A 35 (2020) 2050034.
[36] A.-M.M. Abdel-Rahman, M.H.A. Hashim, Gravitational Lensing in A Model With Non-Interacting Matter and Vacuum Energies
Astrophysics and Space Science 298 (2005) 519-523.
https://doi.org/10.1007/s10509-005-5839-3
[37] A.-M.M. Abdel-Rahman, Gravitational Lensing Effects in a Modified General Relativity Model, Astrophysics and Space Science 278 (2001) 385.
[38] R. Li, J. Wang, Z. Xu, X. Guo, Constraining the Rastall parameters in static space–times with galaxy-scale strong gravitational lensing, Monthly Notices of the Royal Astronomical Society 486 (2019) 2407-2411.
[40] A.H. Ziaie, H. Moradpour, S. Ghaffari, Gravitational Collapse in Rastall Gravity, Physics Letters B793 (2019) 276.
[42] S.A. Hayward, General laws of black-hole dynamics, Physical Review D 49 (1994) 6467.
[43] S.A. Hayward, Gravitational energy in spherical symmetry, Physical Review D 53 (1996) 1938.
[44] C. Bambi, Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, Springer, (2016).
[45] P.C. Vaidya, An Analytical Solution for Gravitational Collapse with Radiation, Astrophysical Journal 144 (1966) 943.
https://ui.adsabs.harvard.edu/link_gateway/1966ApJ...144..943V/doi:10.1086/148692
[46] J.B. Griffiths, J. Podolsky, Exact Space-Times in Einstein's General Relativity, Cambridge University Press (2009).
[47] A. Wang, Y. Wu, Generalized Vaidya Solutions, General Relativity and Gravitation 31 (1999) 107-114.
https://doi.org/10.1023/A:1018819521971
[48] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento B 44, (1966) 1–14.
[49] M. Hashemi, S. Jalalzadeh, A.H. Ziaie, Collapse and dispersal of a homogeneous spin fluid in Einstein–Cartan theory, European Physical Journal C 75 (2015) 53.
[50] F. Haardt, V. Gorini, U. Moschella, A. Treves, M. Colpi, Astrophysical Black Holes, Springer, (2015).