ساخت نانوالیاف توخالی کامپوزیتی SnO2/ZnO به روش الکتروریسی و بررسی خواص ساختاری و فوتوکاتالیستی آنها

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم ، دانشگاه شهید چمران اهواز، اهواز ایران

2 مرکزتحقیقات لیزر و پلاسما، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

در این مقاله تولید نانوالیاف توخالی SnO2/ZnO با استفاده از روش سادۀ الکتروریسی گزارش می‌شود. جهت بررسی میزان بهبود خواص کاربردی و هم‌چنین نحوه تشکیل نانوالیاف توخالی کامپوزیتی، میزان‌های متفاوتی از پیش‌مادۀ ZnO به‌صورت نسبتی از SnO2 مورد مطالعه قرار گرفتند. در این‌کار، خواص ساختاری و نوری نانوالیاف توخالی تولید شده از طریق میکروسکوپ الکترونی روبشی (SEM)، الگوی پراش اشعۀایکس (XRD)، طیف‌سنج تبدیل فوریه (FT-IR) و طیف‌سنج فرابنفش-مرئی (UV-Vis) مورد بررسی قرار می-گیرد. نتایج حاصل از XRD نشان‌دهندۀ تغییرات شدت قله‌های مربوط به ZnO و SnO2 با افزایش و یا کاهش نسبت موجود در کامپوزیت است. طیف حاصل از FT-IR نیز نشان دهندۀ کاهش شدت نسبی نوار مربوط به SnO2 با افزایش میزان نسبی ZnO در کامپوزیت است. علاوه‌ بر این طیف‌های مرئی-فرابنفش، پهن شدگی قله را با اضافه نمودن ZnO نشان می‌دهد. در نهایت در بررسی خواص فوتوکاتایستی برای نسبت‌های مختلف، نسبت ZnO/SnO2 =1/2 بیشترین تجزیۀ رنگ در 2 ساعت تحت تابش پرتو فرابنفش به میزان 62% را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Production of SnO2/ZnO composite hollow nanofibers by electrospining and Investigation of their structural and photocatalytic properties

نویسندگان [English]

  • Abdolmohammad Ghalambor Dezfuli 1 2
  • mahnaz hafizi makan 3
  • zahra seidali lir 3 2
1 Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

In this paper, synthesis of SnO2/ZnO composite hollow nanofibers using simple electrospinning method is reported. To improve the functional properties of composite hollow nanofibers, a different amount of ZnO precursor is added to the SnO2 precursor used in the solution. The structural and optical properties of produced nanofibers are studied using Scanning Electron Microscope (SEM), X-Ray (XRD) Diffraction, Ultraviolet-Visible Spectrophotometer (UV-Vis) and Fourier Transformed Infrared Spectrophotometer (FTIR). The XRD results show changes in the relative intensity of ZnO and SnO2 peaks with the increase or decrease amount of composite components. The FT-IR spectrum indicates a decrease in the relative band intensity of SnO2 with increasing ZnO in the composite. The UV-Vis spectra also show the flattening of the peaks by adding ZnO. Finally in the studying of photocatalytic properties with different ratios, the ratio of    shows the highest color decomposition, of the order of 62%, in 2 hours under UV irradiation.

کلیدواژه‌ها [English]

  • Hollow nanofibers
  • Electrospining
  • SnO2/ZnO
  • Composite
  • Photocatalyst
[1] S.S. Arbuj, U.P. Mulik, D.P. Amalnerkar, Synthesis of Ta2O5/TiO2 Coupled Semiconductor Oxide Nanocomposites with High Photocatalytic Activity, Nanoscience and Nanotechnology Letters 5(2013) 968-973.
 
[2] S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang,  Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals, The journal Of Physical Chemistry 113(2009) 17893-17898.
 
[3] P. Ghadak, G. Asadollahfardi, A. Mirbagheri, Application of reverse osmosis membrane in refinery wastewater treatment, Modares Civil Engineering Journal, 15 (2015) 91-101.
 
[4]Y. Zheng, G. Yao, Q. Cheng, S. Yu, M. Liu, C. Gao, Positively charged thin-film composite hollow fibers nanofiltration membrane for the removal of cationic dyes through submerged filtration, Desalination 328 (2013) 42-50.
 
[5] S. Aoudj, A. Khelifa, N. Drouiche, M. Hecini, H. Hamitouche, Electrocoagulation process applied to wastewater containing dyes from textile industry, J. of Chemical Engineering and Processing 44 (2005) 461-470.
 
[6] K. Asokan,  J.Y. Park, S.W. Choi, S.S. Kim, Nanocomposite ZnO–SnO2Nanofibers Synthesized by Electrospinning Method, Nanoscale Res Lett 5 (2010) 747-752.
 
[7] J. Wang, Z. Chen, Y. Liu, C. Shek, C.M.L. Wu, J.K.L. Lai, Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantumn dots, Solar Energy Materials & Solar Cells 128 (2014) 254-259.
 
[8] I. Sheikhshoaie, N. Zarei, M. Khaleghi, Synthesis and structural investigation of Tin nano oxides Sn (II)/Sn (IV) by Sol-Gel method and investigation of their biological properties, Journal of applied chemistry 12 (2017) 69-80.
 
 [9] H.W. Jun, S.E. Paramonov, J.D. Hartgerink, Biomimetic self-assembled nanofibers, Soft Matter 2 (2006) 177–181.
 
[10] X. Xia, X. J. Dong, Q.F. Weil, Y.B. Cail, K.Y. Lu, Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospining, Express Polymer Lettrs 6(2012) 169-176.
 
[11] W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. LU, X. Li, W. Ln, E. Xia, A novel method to fabricate silica nanotubes based on phase separation effect, Journal of Materials Chemistry 20 (2010) 9068-9072.
 
[12] P. Mohanapriya, H. Segawa, K. Watanabe, K. Watanabe, S. Samitsu, T.S. Natarajan, N.V. Jaya, N. Ohashi, Enhanced Ethanol-Gas Sensing Performance of Ce-Doped SnO2 Hollow Nanofibers Prepared by Electrospinning, Sensors and Actuators B:Chemical, 188 (2013) 872-848
 
 [13] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal Of Physics: ondensed Matter 16 (2004) 829-858.
 
 [14] S.Wei, Y. Zhang, M. Zhou, Toluene sensing properties of SnO2–ZnO hollow nanofibers fabricated from single capillary electrospinning, Solid State Communications 151 (2011) 895–899.
 
[15] Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts, Catalysts 9 (2019) 430.
 
[16] T. Wei, J. Wang, P. Yao, X. Li, Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol, Sensors and Actuators B: Chemical 192 (2014) 543-549.
 
[17] T. Lopez, R. Gomez, Photocatalytic Activity in the 2,4-Dinitroaniline Decomposition Over TiO2 Sol-Gel Derived Catalysts, Journal of Sol-Gel Science and Technology 22 (2001)  99-107.
 
[18] A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity, International Scholarly and Scientific Research & Innovation (2011).
 
[19] Q. Kuang, Z.Y. Jiang, Z.X. Xie, S.C. Lin, Z.W. Lin, S.Y. Xie, R.B. Huang, L.S. Zheng. Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2, Journal of the American Chemical Society 127 (2005) 11777-11784.
 
[20] S.K. Sinha, Tunable structural, optical and electrical properties of annealed ZnO-SnO2 composite thin films deposited by pulsed laser deposition, Advanced Materials 7 (2016) 319-324.
 
[21] Z. Wei, Y. Liu, Y. Yang, P. Wu, Band gap engineering of SnO2 by epitaxial strain: experimental and theoretical investigations, The Journal of Physical Chemistry C 118 (2014) 6448-6453.
 
[22] M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Muller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes, Inorganic chemistry 51 (2012) 7764-7773.