بررسی و مدل سازی تغییرات غلظت رادون در داخل یک اتاق نمونه

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

در این پژوهش به منظور بررسی تغییرات غلظت رادون در محیطهای مسکونی، از یک اتاق بسته نمونه به مساحت 12 مترمربع استفاده گردید. در این اتاق گاز رادون از سطوح کف و دیوارها با آهنگ مختلفی منتشر و مسیر تهویه طبیعی هوا از زیر درب به سمت پنجره وجود داشت. با بهره‌گیری از یک دستگاه اندازه گیری رادون دقیق، غلظت رادون در نقاط مختلف اتاق و برای شرایط و زمانهای متفاوت اندازه‌گیری گردید و با نتایج شبیه‌سازی حاصل از بکارگیری روش دینامیک سیالات محاسباتی (CFD)، در شرایط و زمانهای متناظر مقایسه شد. همچنین به منظور اعتبار‌سنجی نتایج این دو روش، از داده های حاصل از روش حل تحلیلی استفاده گردید. این داده‌ها نشان می‌دهند که پس از یک تهویه طبیعی هوای بسیار آرام، غلظت رادون از یک توزیع یکنواخت نسبی با مقدار متوسط Bq/m3 81 به یک توزیع غیرهمگن نسبی در بازه Bq/m3 12 تا Bq/m3 44 کاهش می یابد. تطابق مناسب نتایج شبیه‌سازی شده و داده‌های تجربی با نتایج حاصل از حل تحلیلی، صحت مدلسازی انجام‌شده را مشخص می سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating and modeling radon density changes inside a sample room

نویسندگان [English]

  • Mohammad Zabihinpour 1
  • ali asghar Mowlavi 2
  • Behnam Azadegan 2
1 1Department of Physics, Faculty of Science, Payame Noor University, Tehran, Iran
2 2Department of Physics, Faculty of Science, Hakime Sabzevari University, Sabzevar, Iran
چکیده [English]

This study aims to investigate changes in radon concentrations in residuals areas, using a sample closed room with the surface area of 12 m2. In the room, radon gas emitted from the floor and walls surfaces with different emission rates, and gaps under the door and around the window were the natural ventilation routes. Radon concentrations were measured in different points of the room in different circumstances and times using an accurate radon detector and then compared with the simulation results from Computational Fluid Dynamics (CFD) technique under corresponding conditions and times. The analytical data were used to validate the results of these two techniques. The results indicate that the radon concentration decreases from a relatively uniform distribution of about 81 Bq/m3 to a relative non-uniform distribution in the range from 12 Bq/m3 to 44 Bq/m3 after a very slow natural ventilation. The simulation results demonstrate an appropriate agreement with the experimental data that indicate the accuracy of performed modeling.

کلیدواژه‌ها [English]

  • Radon
  • Exhalation rates
  • CFD method
  • Natural Ventilation
  • Concentration Distribution
[1] A.J. Khan, R. Prasad, R.K. Tyagi, "Measurement of radon exhalation rate from some building materials." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 20 4(1992) 609-610. https://doi.org/10.1016/1359- 0189(92)90013-L
[2] UNSCEAR Report, United Nations Scientific Committee on Effects of Atomic Radiation, United Nations, New York, E 88 (1888).
[3] W.M. Lowder, "Natural environmental radioactivity and radon gas." Radon monitoring in radioprotection, environmental radioactivity and earth sciences. (1990).
[4] UNSCEAR, Sources, Effects and Risks of Ionization Radiation, Report to the General Assembly, United Nations, New York, (2000). https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
[5] JP. McLaughlin, Radon in indoor air. Commission of the European Communities, (1989). https://www.buildingecology.com/wp-content/uploads/2018/12/ECA_Report15. Pdf
[6] M.R. Edelstein, WJ Makofske, Radon's deadly daughters: science, environmental policy, and the politics of risk (1998) Rowman & Littlefield. https://books.google.com/books/about/Radon_s_Deadly_Daughters.html?id=uLLc84-XfLgC&printsec=frontcover&source=kp_read_button#v=onepage&q&f=false
[7] L. Oufni, M.A. Misdaq, Radon emanation in a limestone cave using CR-39 and LR-115 solid state nuclear track detectors. Journal of Radioanalytical and Nuclear Chemistry 250 2 (2001) 309-313. https://doi.org/10.1023/A:1017951713943
[8] K. Singh, M. Singh, S. Singh, H.S. Sahota, Z. Papp, Variation of radon (222Rn) progeny concentrations in outdoor air as a function of time, temperature and relative humidity. Radiation measurements 39 2 (2005) 213-217. https://doi.org/10.1016/j.radmeas.2004.06. 015
 [9] V.R.K. Murty, J.G. King, N. Karunakara, V.C.C. Raju. Indoor and outdoor radon levels and its diurnal variations in Botswana, Nuclear Instruments and Methods in Physics 619(2010) 446–448. https://doi.org/10.1016/j.nima.2009.10.119
[10] X. Dong, M. Liao, H. Wang, K.J. Kearfott. A study of diurnal and short-term variations of indoor radon concentrations at the University of Michigan, USA and their correlations with environmental factors. Indoor Built Environ, 1 (2016) 1–11.          
[11] N. Chauhan, R.P. Chauhan, M. Joshi. Agarwal, T.K., Aggarwal, P. Sahoo, B.K. Study of indoor radon distribution using measurements and CFD modeling. Journal of Environmental Radioactivity 136 (2014) 105–111.  
[12] K. Akbari, R. Oman, Impacts of heat recovery ventilators on energy savings and indoor radon level. Management of Environmental Quality, 24 (2013) 682-694.   https://doi.org/10.1108/MEQ-06-2012-0050
[13] J.E. Lee, H.C. Park, H.S. Choi, S.Y. Cho, T.Y. Jeong, S.C. Roh, A numerical study on the performance evaluation of ventilation systems for indoor radon reduction. Korean Journal of Chemical Engineering 33 (2016) 782–794.
[14] R. Rabi, L. Oufni, Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements. Radiation Physics and Chemistry, 137 (2017) 40–48.
[15] R. Rabi, L. Oufni, A theoretical and experimental investigation of spatial distribution of radon in a typical ventilated room, MAPAN 33 2 (2018) 123-130.
 [16] A.A. Mowlavi, F. Mohammad Jafari, The Estimated Annual Effective Dose Caused By Radon and Thoron Gases in the Vicinity of Active Faults in the North East of Iran Iranian South Medical Journal 20 1 (2017) 70-76.
[
[17] R. Pourimani, V. Heidari, Investigation of Environmental Radioactivity in the Building Materials in Arak City, Environmental Science & Technology Environmental Science & Technology 19 5(2017) 488–496.
 [18] M. Zabihinpour. A.A. Mowlavi, B. Azadegan. The role of natural ventilation on reducing indoor radon concentration. International journal of Research science and Management 6 4 (2018) 1-10.
[19] B. Clavensjö. G. Åkerblom. The Radon Book. Stockholm: The Swedish Council for Building Research (1994).
[21] N.M. Hassan, M. Hosoda, T. Ishikawa, Sh. Tokonami, M. Fukushi, A.F. Hafez, E. Khalil, 222Rn exhalation rate from Egyptian building materials using active and passive methods, Japanese Journal of Health Physics, 44 1 (2009) 106-111.