بررسی ویژگیهای الکترونی نانوسیستم های نیمرسانای دوبعدی با کمک روش های عددی بدون شبکه، عناصر محدود و تفاضل محدود

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه ریاضی، دانشکده علوم، دانشگاه صنعتی قم، قم، ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه صنعتی قم، قم، ایران

چکیده

در این مقاله، با استفاده از سه روش عددی: تفاضلات متناهی، عناصر متناهی و بدون شبکه، هر کدام با ویژه گی های خاصی، ساختار الکترونی تعدای از نانو سیستم های دو بعدی با کمک حل عددی معادله شرودینگر دو بعدی مورد بررسی و مقایسه قرار می گیرد. برای حل مسایل کاربردی حوزه الکترونیک کوانتومی محاساتی نیمرساناها اغلب نیاز به حل عددی معادلات شرودینگر دو بعدی می باشد که این مسائل عموما دارای پیچیدگیهای محاسباتی خاص خود می باشند. محاسبه ویژه مقادیر یکی از مهمترین چالش ها در این حوزه می باشد. در اینجا، با کمک پنج مثال کابردی، نشان داده شده است که تحت شرایط مفروض، اندازه ویژه مقادیر مسئله، در روش تفاضلات محدود از پایین و در روش المان محدود از بالا به مقادیر واقعی نزدیک می شود. بنابراین در صورت نیاز به دقت بالا برای یک مسئله عمومی کاربردی که حل تحلیلی آن وجود ندارد، با کمک این دو روش می توان تقریبی از کران بالا و پایین و بازه ای برای ویژه مقادیر یافت. در ادامه نشان داده شده، روش بدون شبکه بالاترین دقت را در بین روش های ارائه شده برای مثال های مورد بررسی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Electronic properties of two dimensional semiconducting Nano-systems, by using few numerical approaches: meshless, finite element and finite difference methods

نویسندگان [English]

  • mehrzad ghorbani 1
  • mehdi solaimani 2
1 Department of mathematics, faculty of sciences, Qom University of technology, Qom, IRAN Iran
2 Department of Physics, Faculty of sciences, Qom University of Technology, Qom, Iran
چکیده [English]

در این مقاله، با استفاده از سه روش عددی تفاضلات متناهی، عناصر متناهی و بدون شبکه ساختار الکترونی تعدای از نانو سیستم‌های دو بعدی با کمک حل عددی معادله شرودینگر دو بعدی مورد بررسی و مقایسه قرار می‌گیرد. برای حل مسائل کاربردی حوزه الکترونیک کوانتومی محاسباتی نیم رساناها اغلب نیاز به حل عددی معادلات شرودینگر دو بعدی می‌باشد که این مسائل عموما بخاطر عدم وجود جواب های تحلیلی دارای پیچیدگی‌های محاسباتی خاص خود می‌باشند. محاسبه ویژه مقادیر، یکی از مهمترین چالش‌های این حوزه می‌باشد. در اینجا، با کمک پنج مثال متنوع کابردی، نشان داده شده است که تحت شرایط مفروض، اندازه ویژه مقادیر مسئله، در روش تفاضلات محدود از پایین و در روش المان محدود از بالا به مقادیر واقعی نزدیک می‌شود. بنابراین در صورت نیاز به دقت بالا برای یک مسئله عمومی کاربردی که حل تحلیلی آن وجود ندارد، با کمک این دو روش می‌توان تقریبی از کران بالا و پایین و بازه‌ای برای ویژه مقادیر یافت. در ادامه نشان داده شده، روش بدون شبکه بالاترین دقت را در بین روش‌های ارائه شده برای مثال‌های مورد بررسی دارد.

کلیدواژه‌ها [English]

  • Two dimensional Schrodinger equations
  • Meshless methods
  • Finite element method
  • Finite difference method
  • multiquadric radial basis functions
[1] M. Solaimani, M. Ghalandari, L. Lavaei, Donor impurity effects on optical properties ofG aN/AlN constant total effective radius multishell quantum dots, Journal of the Optical Society of America B 33 (2016)420-125.https://doi.org/10.1364/JOSAB.33.000420
##[2] J. Burki, C.A. Stafford, X. Zotos, D. Baeriswyl, Cohesion and conductance of disordered metallic point contacts, Physical Review B, 60 (1999) 5000-5008. https://doi.org/10.1103/PhysRevB.60.5000
##[3] X.Z. Duan, X.J. Kong, Electron and hole states and the exciton diamagnetic shifts in an InAs/InP rectangular quantum wire in a magnetic field, Journal of Applied Physics 104 (2008) 113720. https://doi.org/10.1063/1.3039800
##[4] B.S. Monozon, P. Schmelcher, Resonant Franz-Keldysh exciton effect in the narrow biased quantum wire subjectnto a strong magnetic field, Physical Review B 79 (2009) 165314. https://doi.org/10.1103/PhysRevB.79.165314
##[5] E. Kasapoglu, H. Sari, I. Sokmen, Geometrical effects on shallow donor impurities in quantum wires, Physica E 19 (2003) 332-335. https://doi.org/10.1016/S1386-9477(03)00382-5
##[6] M. Solaimani, Stark shift of binding energy for on and off-center donor impurities in quantum rings under the influence of charged rods electric fields, Solid State Sciences 108 (2020) 106386. https://doi.org/10.1016/j.solidstatesciences.2020.106386
##[7] M. Solaimani, Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots, Chinese Physics Letters. 32 (2015) 117304. https://doi.org/10.1088/0256-307X/32/11/117304
##[8] C. Galeriu, L.C. Lew Yan Voon, R. Melnik, M. Willatzen, Modeling a nanowire superlattice using the finite difference method in cylindrical polar coordinates, Computer Physics Communications, 157 (2004) 147-159. https://doi.org/10.1016/S0010-4655(03)00493-4
##[9] J.S. Dehesa, J.A. Porto, F.A. Rueda, F. Meseguer, Electronic energy levels of quantum well wires, Journal of Applied Physics, 73 (1993)5027-5031. https://doi.org/10.1063/1.353772
##[10] Y. Tsuji, M. Koshiba, Analysis of complexeigenenergies of an electron in two- and three-dimensionally confined systems using the weighted potential method, Microelectronics Journal, 30 (1999) 1001-1006. https://doi.org/10.1016/S0026-2692(99)00062-2
##[11] S. Gangopadhyay, B.R. Nag, Energy levels in finite barrier triangular and arrowhead-shaped quantum wires, Journal of Applied Physics, 81 (1997). 7885-7889. https://doi.org/10.1063/1.365361
##[12] J.S. Walker, Fourier Analysis, Oxford Univ. Press (1988).
##[13] A. Mayer, Band-structure and transport calculations in quantum wires using a transfer-matrix technique, Physical Chemistry News, 16 (2004) 46-53. http://dx.doi.org/10.1116/1.3698600
##[14] P. Sudhira, B.K. Panda, S. Fung, C.D. Beling Electric field effect on the diffusion modified AlGaAs/GaAs single quantum well, Journal of Applied Physics, 80 (1996) 1532-1540. https://doi.org/10.1063/1.362948
##[15] G.D. Smith, Numerical Solution Of Partial Differential Equations: Finite Difference Methods, Oxford University Press (1986).
##[16] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics I, Springer (1988).
##[17] R. Samir, P. Hideaki, E.B. Harvey Quasibound states in semiconductor quantum well structures, Superlattices and Microstructures, 47 (2010) 288–299. https://doi.org/10.1016/j.spmi.2009.10.016
##[18] B. Dietrich, Finite elements: theory, fast solvers, and applications in elasticity theory, Cambridge University Press (2007).
##[19] H. Ciftci, R.L. Hall, N. Saad, Asymptotic iteration method for eigenvalue problems, Journal of Physics A: Mathematical Gen. 36 (2003) 11807–11816. https://doi.org/10.1088/0305-4470/36/47/008
##[20] M.A. Martin-Delgado, G. Sierra, R.M. Noack, The density matrix renormalization group applied to single-particle quantum mechanics, Journal of Physics A: Mathematical Gen. 32 (1999) 6079-6090. https://doi.org/10.1088/0305-4470/32/33/306
##[21] D.V. Melnikov, L.-X. Zhang, J.-P. Leburton, Exchange coupling between two electrons in double quantum dot structures, Current Opinion in Solid State and Materials Science 10 (2006) 114-119. https://doi.org/10.1016/j.cossms.2006.11.004
##[22] R. Saha, P. Chaudhury, S.P. Bhattacharyya, Direct solution of Schrödinger equation by genetic algorithm: test cases, Physics Letters A 291 (2001) 397-406. https://doi.org/10.1016/S0375-9601(01)00704-6
##[23] J. Biazar, H. Ghazvini, Exact solutions for non-linear Schrödinger equations by He’s homotopy perturbation method, Physics Letters A 366 (2007) 79-84.
##[24] M. Pillai, J. Goglio, T.G. Walker, Matrix Numerov method for solving Schrödinger’s equation, American Journal of Physics 80 (2012) 1017. https://doi.org/10.1119/1.4748813
##[25] H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation, Computer Physics Communications 166 (2005) 109-122.
##[26] J.D. Lambert, Numerical methods for ordinary differential systems, Wiley (1991).
##[27] M. Solaimani, S. M. A. Aleomraninejad, Optical Properties of Energy-Dependent Effective Mass GaAs/GaxIn1-xAs and GaAs/AlxGa1-xAs Quantum Well Systems: A Shooting Method Study, J. Electron. Mater. 48 (2019) 942-950. https://doi.org/10.1007/s11664-018-6813-5
##[28] D. El-Moghraby, R.G. Johnson, P. Harrison, Calculating modes of quantum wire and dot systems using a finite differencing technique, Computer Physics Communications 150 (2003) 235-246. https://doi.org/10.1016/S0010-4655(02)00690-2
 ##[29] K. Nouroozi, S.M.A. Aleomraninejad, M. Solaimani, B. Farnam, Computation of the linear Schrodinger Energy levels by Sinc method, Journal of New Researches in Mathematics, 3 (2017) 81-90. http://jnrm.srbiau.ac.ir/article_11165_fa.html
##[30] G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for physics, Academic Press (2012).
##[31] M. Ghorbani, Diffuse Element Kansa Method, Applied Mathematical Sciences, 4 (2010) 583-594. http://www.m-hikari.com/ams/ams-2010/ams-9-12-2010/ghorbaniAMS9-12-2010.pdf
##[32] L. Jichun, Y.C. Honb, C.S. Chen Numerical comparisons of two meshless methods using radial basis functions, Engineering Analysis with Boundary Elements, 26 (2002) 205-225. https://doi.org/10.1016/S0955-7997(01)00101-1
[33] S. Gasiorowicz, Quantum Physics, John Wiley. (2003).
##[34] L.G. Ixaru, New numerical method for the eigenvalue problem of the 2D Schrödinger equation, Computer Physics Communications, 181 (2010) 1738-1742. https://doi.org/10.1016/j.cpc.2010.06.031
##[35] R. Khordad, Diamagnetic susceptibility of hydrogenic donor impurityinaV-grooveGaAs/Ga1-xAlxAs quantum wire, European Physical Journal B 78 (2010)399-403https://doi.org/10.1140/epjb/e2010-10290-x  
##[36] E. Sadeghi, R. Khordad, Analytical solution for V-groove quantum wire with an effective potential scheme, physica status solidi B, 242(2005) 1628-1635. https://doi.org/10.1002/pssb.200540051