1] M. Solaimani, M. Ghalandari, L. Lavaei, Donor impurity effects on optical properties ofG aN/AlN constant total effective radius multishell quantum dots,
Journal of the Optical Society of America B 33 (2016)420-125.
https://doi.org/10.1364/JOSAB.33.000420
##[3] X.Z. Duan, X.J. Kong, Electron and hole states and the exciton diamagnetic shifts in an InAs/InP rectangular quantum wire in a magnetic field,
Journal of Applied Physics 104 (2008) 113720.
https://doi.org/10.1063/1.3039800
##[4] B.S. Monozon, P. Schmelcher, Resonant Franz-Keldysh exciton effect in the narrow biased quantum wire subjectnto a strong magnetic field,
Physical Review B 79 (2009) 165314.
https://doi.org/10.1103/PhysRevB.79.165314
##[8] C. Galeriu, L.C. Lew Yan Voon, R. Melnik, M. Willatzen, Modeling a nanowire superlattice using the finite difference method in cylindrical polar coordinates,
Computer Physics Communications,
157 (2004) 147-159.
https://doi.org/10.1016/S0010-4655(03)00493-4
##[9] J.S. Dehesa, J.A. Porto, F.A. Rueda, F. Meseguer, Electronic energy levels of quantum well wires,
Journal of Applied Physics,
73 (1993)5027-5031.
https://doi.org/10.1063/1.353772
##[10] Y. Tsuji, M. Koshiba, Analysis of complexeigenenergies of an electron in two- and three-dimensionally confined systems using the weighted potential method,
Microelectronics Journal,
30 (1999) 1001-1006.
https://doi.org/10.1016/S0026-2692(99)00062-2
##[11] S. Gangopadhyay, B.R. Nag, Energy levels in finite barrier triangular and arrowhead-shaped quantum wires,
Journal of Applied Physics,
81 (1997). 7885-7889.
https://doi.org/10.1063/1.365361
##[12] J.S. Walker, Fourier Analysis, Oxford Univ. Press (1988).
##[13] A. Mayer, Band-structure and transport calculations in quantum wires using a transfer-matrix technique,
Physical Chemistry News,
16 (2004) 46-53.
http://dx.doi.org/10.1116/1.3698600
##[14] P. Sudhira, B.K. Panda, S. Fung, C.D. Beling Electric field effect on the diffusion modified AlGaAs/GaAs single quantum well,
Journal of Applied Physics,
80 (1996) 1532-1540.
https://doi.org/10.1063/1.362948
##[15] G.D. Smith, Numerical Solution Of Partial Differential Equations: Finite Difference Methods, Oxford University Press (1986).
##[16] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics I, Springer (1988).
##[18] B. Dietrich, Finite elements: theory, fast solvers, and applications in elasticity theory, Cambridge University Press (2007).
##[20] M.A. Martin-Delgado, G. Sierra, R.M. Noack, The density matrix renormalization group applied to single-particle quantum mechanics,
Journal of Physics A: Mathematical Gen. 32 (1999) 6079-6090.
https://doi.org/10.1088/0305-4470/32/33/306
##[21] D.V. Melnikov, L.-X. Zhang, J.-P. Leburton, Exchange coupling between two electrons in double quantum dot structures,
Current Opinion in Solid State and Materials Science 10 (2006) 114-119.
https://doi.org/10.1016/j.cossms.2006.11.004
##[23] J. Biazar, H. Ghazvini, Exact solutions for non-linear Schrödinger equations by He’s homotopy perturbation method, Physics Letters A 366 (2007) 79-84.
##[24] M. Pillai, J. Goglio, T.G. Walker, Matrix Numerov method for solving Schrödinger’s equation,
American Journal of Physics 80 (2012) 1017.
https://doi.org/10.1119/1.4748813
##[25] H. Van de Vyver, Comparison of some special optimized fourth-order Runge–Kutta methods for the numerical solution of the Schrödinger equation, Computer Physics Communications 166 (2005) 109-122.
##[26] J.D. Lambert, Numerical methods for ordinary differential systems, Wiley (1991).
##[27] M. Solaimani, S. M. A. Aleomraninejad, Optical Properties of Energy-Dependent Effective Mass GaAs/GaxIn
1-xAs and GaAs/AlxGa
1-xAs Quantum Well Systems: A Shooting Method Study,
J. Electron. Mater. 48 (2019) 942-950.
https://doi.org/10.1007/s11664-018-6813-5
##[28] D. El-Moghraby, R.G. Johnson, P. Harrison, Calculating modes of quantum wire and dot systems using a finite differencing technique,
Computer Physics Communications 150 (2003) 235-246.
https://doi.org/10.1016/S0010-4655(02)00690-2
##[29] K. Nouroozi, S.M.A. Aleomraninejad, M. Solaimani, B. Farnam, Computation of the linear Schrodinger Energy levels by Sinc method,
Journal of New Researches in Mathematics,
3 (2017) 81-90.
http://jnrm.srbiau.ac.ir/article_11165_fa.html
##[30] G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for physics, Academic Press (2012).
[33]
S. Gasiorowicz,
Quantum Physics, John Wiley. (2003).
##[36] E. Sadeghi, R. Khordad, Analytical solution for V-groove quantum wire with an effective potential scheme, physica status solidi B, 242(2005) 1628-1635.
https://doi.org/10.1002/pssb.200540051