[1] N. Pandey, H.H. Lin, A. Nandi, Y. Taur, Modeling of short-channel effects in DG MOSFETs: Green’s function method versus scale length model,
IEEE Transactions on Electron Devices, 65, (2018) 3112-3119.
https://doi.org/10.1109/TED.2018.2845875
##
[2] F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, S. Gerardin, Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs,
IEEE Transactions on Nuclear Science ,
62, (2015) 2933-2940.
https://doi.org/10.1109/TNS.2015.2492778
##
[3] G. Ansaripour, Calculation of Surface Potential and Subthreshold Current in Short Channel Nano MOSFETs,
Journal of Research on Many-body Systems, 1, (2011)1-8.
doi: 10.22055/jrmbs.2011.10346
##[4] E. Goel, S. Kumar, K. Singh, B. Singh, M. Kumar, S. Jit, 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs,
IEEE Transactions on Electron Devices, 63, (2016) 966-973.
https://doi.org/10.1109/TED.2016.2520096
##
[5] J.A. Del Alamo,D.A. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao, Nanometer-Scale III-V MOSFETs,
IEEE Journal of the Electron Devices Society, 4, (2016) 205-214.
https://doi.org/10.1109/JEDS.2016.2571666
##
[6] M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier, Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes,
IEEE International Electron Devices Meeting (IEDM), (2016) 758-761.
https://doi.org/10.1109/IEDM.2016.7838515
##
##
[8] C.F. Yen, M.Y. Yeh, K.K Chong, C.F. Hsu, M.K. Lee, InP MOS capacitor and E-mode n-channel FET with ALD Al 2 O 3-based high-k dielectric,
Applied Physics A,
122, (2016) 683.
https://doi.org/10.1007/s00339-016-0165-x
##
[9] T. Dutta, P. Kumar, P. Rastogi,A. Agarwal, Y.S. Chauhan, Atomistic study of band structure and transport in extremely thin channel InP MOSFETs,
physica status solidi (a), 213, (2016) 898-904.
https://doi.org/10.1002/pssa.201532727
##
[10] Z.Ahangari, Simulation of Quantum transport in nanoscale InP double gate Schottky transistor via non-equilibrium green’s function formalism, 3rd Iranian Computational Physics Conference, January (2018), Shahid Beheshti University.
##
[11] Z. Yang, C. Kim, K.Y. Lee, M. Lee, S. Appalakondaiah, C.H. Ra, K. Watanabe, T. Taniguchi, K. Cho, E. Hwang, J. Hone, A Fermi‐Level‐Pinning‐Free 1D Electrical Contact at the Intrinsic 2D MoS2–Metal Junction,
Advanced Materials, 31, (2019), 1808231.
https://doi.org/10.1002/adma.201808231
##
[12] S.B. Eadi, J.C. Lee, H.S. Song, J. Oh, G.W. Lee, H.D. Lee, Effective Schottky barrier lowering of NiGe/p-Ge (100) using Terbium interlayer structure for high performance p-type MOSFETs,
Scientific Reports, 10, (2020) 1-9.
https://doi.org/10.1038/s41598-020-61011-4
##
[13] S. Kale, P. N. Kondekar, Design and investigation of double gate Schottky barrier MOSFET using gate engineering, Micro & Nano Letters, 10, (2015) 707-711.
##
[14] Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M.S. Lundstrom, nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs,
IEEE Transactions on Electron Devices, 50, (2003) 1914-1925.
https://doi.org/10.1109/TED.2003.816524
##
[15] J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors,
IEEE transactions on electron devices, 51, (2004) 172-177.
https://doi.org/10.1109/TED.2003.821883
##
##[17] M.G. Pala, D. Esseni, Quantum transport models based on NEGF and empirical pseudopotentials for accurate modeling of nanoscale electron devices,
Journal of Applied Physics, 126, (2019) 055703.
https://doi.org/10.1063/1.5109187
##
[18] S. Zhang, J.Z. Huang, H. Xie, A. Khaliq, D. Wang, W. Chen, K. Miao, H. Chen, W.Y. Yin, Design Considerations for Si-and Ge-Stacked Nanosheet pMOSFETs Based on Quantum Transport Simulations,
IEEE Transactions on Electron Devices,
67, (2019) 26-32.
https://doi.org/10.1109/TED.2019.2954308
##
[19] J.M. Jancu, R. Scholz, F. Beltram, F. Bassani, Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters,
Physical Review B, 57, (1998) 6493.
https://doi.org/10.1103/PhysRevB.57.6493
##
[20] S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).