Bandstructure computation and investigation of resonant tunneling in nanoscale Schottky field effect transistor via sp3d5s* tight binding approach and non-equilibrium Green's function formalism

Document Type : Full length research Paper

Author

Department of Electronic, Faculty of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.

Abstract

In this paper, the electrical characteristics and resonant tunneling phenomenon in nanoscale double gate field effect Schottky transistor with InP (Indium Phosphide) as the channel material is investigated via non-equilibrium Green's function formalism. Unlike the conventional field effect transistor with doped source/drain, Schottky transistor possesses metallic source/drain regions and direct tunneling from source to channel is the main current mechanism of this device. The bandstructure of double gate device is calculated based on sp3d5s* tight binding approach employing thickness dependant two dimensional Hamiltonian. Reducing the channel thickness results in the increment of the carrier effective mass and shift of energy of subbands to higher values, in comparison with the related bulk values. In addition, by scaling down the channel thickness, gate control over the channel is enhanced that results in the improvement of the device electrical characteristics. Next, due to the increment of the effective Schottky barrier that is originated from quantum effects, a quantum well profile is created along the channel length from source to drain at low drain voltages. In this situation and for reduced values of temperature, resonant tunneling occurs in the proposed device. Different physical and structural parameters that may affect resonant tunneling are thoroughly investigated.

Keywords


 
[1] N. Pandey, H.H. Lin, A. Nandi, Y. Taur, Modeling of short-channel effects in DG MOSFETs: Green’s function method versus scale length model, IEEE Transactions on Electron Devices, 65, (2018) 3112-3119. https://doi.org/10.1109/TED.2018.2845875
 ##
[2] F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, S. Gerardin, Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs, IEEE Transactions on Nuclear Science , 62, (2015) 2933-2940. https://doi.org/10.1109/TNS.2015.2492778
 ##
[3] G. Ansaripour, Calculation of Surface Potential and Subthreshold Current in Short Channel Nano MOSFETs, Journal of Research on Many-body Systems, 1, (2011)1-8.  doi: 10.22055/jrmbs.2011.10346
 
##[4] E. Goel, S. Kumar, K. Singh, B. Singh, M. Kumar, S. Jit, 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs, IEEE Transactions on Electron Devices, 63, (2016) 966-973. https://doi.org/10.1109/TED.2016.2520096
 ##
[5] J.A. Del Alamo,D.A.  Antoniadis, J.  Lin, W. Lu, A. Vardi, X. Zhao, Nanometer-Scale III-V MOSFETs, IEEE Journal of the Electron Devices Society, 4, (2016) 205-214. https://doi.org/10.1109/JEDS.2016.2571666
 ##
[6] M. Rau, E. Caruso, D. Lizzit, P. Palestri, D. Esseni, A. Schenk, L. Selmi, M. Luisier, Performance projection of III-V ultra-thin-body, FinFET, and nanowire MOSFETs for two next-generation technology nodes, IEEE International Electron Devices Meeting (IEDM), (2016) 758-761.   https://doi.org/10.1109/IEDM.2016.7838515
 ##
[7] J. Ajayan, D. Nirmal, A review of InP/InAlAs/InGaAs based transistors for high frequency applications,  Superlattices and Microstructures86 (2015) 1-19. https://doi.org/10.1016/j.spmi.2015.06.048
 ##
[8] C.F. Yen, M.Y. Yeh, K.K Chong, C.F. Hsu, M.K. Lee, InP MOS capacitor and E-mode n-channel FET with ALD Al 2 O 3-based high-k dielectric,  Applied Physics A122, (2016) 683. https://doi.org/10.1007/s00339-016-0165-x
 ##
[9] T. Dutta, P. Kumar, P.  Rastogi,A.  Agarwal, Y.S. Chauhan, Atomistic study of band structure and transport in extremely thin channel InP MOSFETs, physica status solidi (a), 213, (2016) 898-904. https://doi.org/10.1002/pssa.201532727
 ##
[10] Z.Ahangari, Simulation of Quantum transport in nanoscale InP double gate Schottky transistor via non-equilibrium green’s function formalism, 3rd Iranian Computational Physics Conference, January (2018), Shahid Beheshti University.
 ##
 [11] Z. Yang, C. Kim, K.Y. Lee, M. Lee, S.  Appalakondaiah, C.H. Ra, K. Watanabe, T.  Taniguchi, K. Cho, E. Hwang, J. Hone, A Fermi‐Level‐Pinning‐Free 1D Electrical Contact at the Intrinsic 2D MoS2–Metal Junction, Advanced Materials, 31, (2019), 1808231. https://doi.org/10.1002/adma.201808231
 ##
[12] S.B. Eadi, J.C. Lee, H.S. Song, J. Oh, G.W. Lee, H.D. Lee, Effective Schottky barrier lowering of NiGe/p-Ge (100) using Terbium interlayer structure for high performance p-type MOSFETs, Scientific Reports, 10, (2020) 1-9. https://doi.org/10.1038/s41598-020-61011-4
 ##
[13] S. Kale, P. N. Kondekar, Design and investigation of double gate Schottky barrier MOSFET using gate engineering, Micro & Nano Letters, 10,  (2015) 707-711.
 ##
[14] Z. Ren, R.  Venugopal, S. Goasguen, S. Datta,  M.S. Lundstrom, nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs, IEEE Transactions on Electron Devices, 50, (2003) 1914-1925. https://doi.org/10.1109/TED.2003.816524
 ##
[15] J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE transactions on electron devices, 51, (2004) 172-177. https://doi.org/10.1109/TED.2003.821883
 ##
[16] S. Datta, Quantum transport: atom to transistor, Cambridge university press)2005(https://doi.org/10.1017/CBO9781139164313
##[17] M.G. Pala, D. Esseni, Quantum transport models based on NEGF and empirical pseudopotentials for accurate modeling of nanoscale electron devices,  Journal of Applied Physics, 126, (2019)  055703. https://doi.org/10.1063/1.5109187
 ##
[18] S. Zhang, J.Z. Huang, H. Xie, A. Khaliq, D. Wang, W. Chen, K. Miao, H. Chen, W.Y. Yin, Design Considerations for Si-and Ge-Stacked Nanosheet pMOSFETs Based on Quantum Transport Simulations, IEEE Transactions on Electron Devices, 67, (2019) 26-32. https://doi.org/10.1109/TED.2019.2954308
 ##
[19] J.M. Jancu, R. Scholz, F. Beltram, F. Bassani, Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters, Physical Review B, 57, (1998) 6493. https://doi.org/10.1103/PhysRevB.57.6493
 ##
[20] S. Adachi, Physical properties of III-V semiconductor compounds. John Wiley & Sons, (1992).