طراحی و شبیه سازی حسگر بازتابنده پادزنشی پلاسمونی تشدیدگر حلقوی چهارطبقه برای تشخیص باکتری اشریشا کولای O157 در آب

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

دانشکده فیزیک، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

در این مقاله، یک حسگرزیستی شامل موجبر بازتابنده پادزنشی پلاسمونیکی و میکرو تشدیدگر حلقوی ورنیری طراحی شد. ابتدا با تغییر ضریب شکست محلول در لایه پوشش یک موجبر بازتابنده پادزنشی پلاسمونیکی دندانه دار ،مُدهای مغناطش عرضی شامل یک مد خالص و یک مد پلاریتون سطحی در مرز دی‌الکتریک - فلز ، در طیف طول موجی با استفاده از روش حل ویژه تفاضل محدود مورد بررسی قرار گرفت. موجبر طراحی شده در یک سیستم تشدیدگر حلقوی چهار طبقه با گستره آزاد طیفی 150 nm به عنوان حسگر زیستی مورد بررسی قرار گرفت. تابع انتقال نوری این حسگر چهار طبقه با استفاده از روش تاخیر خطی پردازش سیگنال و قائده میسون محاسبه شد. سپس حسگر را برای تشخیص باکتری اشریشا کولای(Escherichia coli-O157) در آب آشامیدنی بکار بردیم و به حساسیتهای 4/140 و 9/475 و دقتهای 4-10× 14/1 و 5-10× 36/3 به ترتیب برای مد های مغناطش عرضی پایه و اول دست یافتیم. مزایای حسگر ارایه شده نسبت به دیگر حسگرهای موجود درتشخیص سریع باکتری با حساسیت و دقت بالا، اندازه کوچک در ابعاد میکرومتر، ساخت در دسترس و ارزان و قابلیت اتصال به سیستمهای الکترونیکی موجود است.

کلیدواژه‌ها


عنوان مقاله [English]

Design and simulation of four stage antiresonant reflecting plasmonic microring biosensor for detection of Ecoli Bacterium-O157 in water

نویسندگان [English]

  • abbas Kalate Seyfari
  • Amir Hossein Zareian
  • Mahdi Bahadoran
Department of Physics, Shiraz University of Technology, 31371555, Shiraz, Fars, Iran.
چکیده [English]

In this paper, a combined biosensor from anti-resonant reflecting plasmonic waveguide (ARPWG) and Vernier-based microring resonator was designed. The Finite Difference Eigen solver method was used for ARPWG and two fundamental modes, including a pure mode and a bound surface plasmon polariton mode in the vicinity of the metal-dielectric interface, were obtained at the visible wavelengths by varying the refractive index of the superstrate layer. Then, the ARPWG applied in the four stage microresonator for achieving a free spectral range of 150 nm. The optical transfer function of this sensor was derived using the delay line signal approach and Mason rule. Lastly, the designed sensor was used for detection of Ecoli-O157 bacterium in drinking water. The sensitivity of 140.4 nm/RIU and 475.9 nm/RIU and the detection limit of 1.14 ×10-4 RIU and 3.36 ×10-5 RIU were realized for TMo and TM1 modes, respectively. The Advantages of the proposed sensor rather than conventional biosensors are in fast detection, high sensitivity and resolution, microscale size, low cost and the ability to integrate into the available electronics systems

کلیدواژه‌ها [English]

  • Anti-resonant reflecting waveguide
  • Ecoli-O157 bacterium
  • Biosensor
  • Vernier sensor
  • microring resonator
[1] M. Janik, M. Koba, A. Celebańska, W.J. Bock, M. Śmietana, Live E. coli bacteria label-free sensing using a microcavity in-line Mach-Zehnder interferometer, Scientific reports, 8 (2018) 1-8. https://doi.org/10.1038/s41598-018-35647-2
##[2] N. Allocati, M. Masulli, M.F. Alexeyev, and C. Di Ilio, Escherichia coli in Europe: An Overview, International Journal of Environmental Research and Public Health, 10 (2013) 6235-6254.  https://doi.org/10.3390/ijerph10126235
##[3] K. Rijal, A. Leung, P.M. Shankar, R. Mutharasan, Detection of pathogen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors, Biosensors and Bioelectronics, 21 (2005) 871-880. https://doi.org/10.1016/j.bios.2005.02.006
##[4] P. Arora, A. Sindhu, N. Dilbaghi, A. Chaudhury, Biosensors as innovative tools for the detection of food borne pathogens, Biosensors and Bioelectronics, 28 (2011) 1-12. https://doi.org/10.1016/j.bios.2011.06.002
##[5] B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, et al., Recent advances in recognition elements of food and environmental biosensors: a review, Biosensors and Bioelectronics, 26 (2010) 1178-1194. https://doi.org/10.1016/j.bios.2010.07.033
##[6] A. Shabani, M. Zourob, B. Allain, C.A. Marquette, M.F. Lawrence, R. Mandeville, Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria, Analytical chemistry, 80 (2008) 9475-9482. https://doi.org/10.1021/ac801607w
##[7] S. Balasubramanian, I.B. Sorokulova, V.J. Vodyanoy, A.L. Simonian, Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study, Biosensors and Bioelectronics, 22 (2007) 948-955. https://doi.org/10.1016/j.bios.2006.04.003
##[8] N. Idil, M. Hedström, A. Denizli, B. Mattiasson, Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli, Biosensors and Bioelectronics, 87 (2017) 807-815. https://doi.org/10.1016/j.bios.2016.08.096
##[9] A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nature Communications, 10 (2019) 3737. https://doi.org/10.1038/s41467-019-11644-5
##[10] Q. Xiang, The Development and Application of Electrochemical Biosensor, Berlin, Heidelberg, (2011) 215-220. https://doi.org/10.1007/978-3-642 24022-5_36
##[11] J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors," Nature Nanotechnology, 6 (2011) 203-215. https://doi.org/10.1038/nnano.2011.44
##[12] Y. Luo, E.C. Alocilja, Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices, Journal of Biological Engineering, 11 (2017) 14. https://doi.org/10.1186/s13036-017-0053-8
##[13] M. Bahadoran, M. Aziz, A. Noorden, M. Jalil, J. Ali, P. Yupapin, Novel Approach to Determine the Young's Modulus in Silicon-On-Insulator Waveguide using Microring Resonator, Digest Journal of Nanomaterials and Biostructures, 9 (2014) 1095-1104. https://chalcogen.ro/1095_Bahadoran.pdf
##[14] S. Tombelli, M. Minunni, M. Mascini, Analytical applications of aptamers, Biosensors and Bioelectronics, 20 (2005) 2424-2434. https://doi.org/10.1016/j.bios.2004.11.006
##[15] M. Smietana, W.J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings, Optics Express, 19 (2011) 7971-7978.
##[16] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, et al., Nanostructured plasmonic sensors" Chemical reviews, 108 (2008) 494-521. https://doi.org/10.1021/cr068126n
##[17] B. Luff, J.S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, Integrated optical mach-zehnder biosensor, Journal of lightwave technology, 16 (1998) 583.
##[18] M.E. Bosch, A.J.R. Sánchez, F.S. Rojas, C.B. Ojeda, Recent development in optical fiber biosensors, Sensors, 7 (2007) 797-859. https://doi.org/10.3390/s7060797
##[19] M. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Optics express, 15 (2007) 4530-4535. https://doi.org/10.1364/OE.15.004530
##[20] D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, et al., Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach," Optics letters, 35 (2010) 2771-2773. 10.1364/ol.35.002771.
##[21] R. Bernini, S. Campopiano, L. Zeni, Silicon micromachined hollow optical waveguides for sensing applications, IEEE Journal of selected topics in quantum electronics, 8 (2002) 106-110. 10.1109/2944.991405
##[22] H.J. Patrick, A.D. Kersey, F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction," Journal of lightwave technology, 16 (1998) 1606.
##[23] A.F.A. Noordena, M. Bahadorana, K. Chaudharya, M.S. Aziza, M A. Jalilb, J. Alia, et al., Optical bistability in all-pass Mobius configuration microring resonator, J. Teknol, 76 (2015)  101-108. https://doi.org/10.11113/jt.v76.5835
##[24] Y. Kokubun, T. Kato, Series-coupled and parallel-coupled add/drop filters and FSR extension, in Photonic Microresonator Research and Applications, ed: Springer, (2010)  pp. 87-113. https://doi.org/10.1007/978-1-4419-1744-7_4
##[25] M. Bahadoran, A. Afroozeh, J.B. Ali, P.P. Yupapin, Slow light generation using microring resonators for optical buffer application, Optical Engineering, 51 (2012) 044601. https://doi.org/10.1117/1.OE.51.4.044601
##[26] M. Bahadoran, A. Noorden, K. Chaudhary, F. Mohajer, M. Aziz, S. Hashim, et al., Modeling and analysis of a microresonating biosensor for detection of Salmonella bacteria in human blood, 14 (2014) 12885-12899. 10.3390/s140712885
##[27] M. Bahadoran, Analysis of InGaAsP-InP Double Microring Resonator using Signal Flow Graph Method, Journal of Optoelectronical Nanostructures Spring, 3 (2018).
##[28] S.M. Yoo, S.Y. Lee, Optical biosensors for the detection of pathogenic microorganisms, Trends in biotechnology, 34 (2016) 7-25. 10.1016/j.tibtech.2015.09.012
##[29] J. Grandidier, G.C. Des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, et al., Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip, Applied Physics Letters, 96 (2010) 063105. 10.1063/1.3300839
##[30] L. Chen, X. Li, G. Wang, A hybrid long-range plasmonic waveguide with sub-wavelength confinement, Optics Communications, 291 (2013) 400-404. 10.1016/j.optcom.2012.11.031
##[31] V.J. Sorger, Z. Ye, R.F. Oulton, Y. Wang, G. Bartal, X. Yin, et al., Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales, Nature Communications, 2 (2011) 331. 10.1038/ncomms1315
##[32] E.D. Palik, Handbook of optical constants of solids 3 (1998) Academic press.
##[33] T. Baba, Y. Kokubun, Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions, IEEE Journal of Quantum electronics, 28 (1992) 1689-1700. 10.1109/3.142556
##[34] R. Sinha, R. Bhattacharyya, Analysis and design of hybrid ARROW-B plasmonic waveguides, JOSA A 30 (2013) 1502-1507 .10.1364/JOSAA.30.001502
##[35] K.H. Kim, S.H. Choe, Slow and Stopped Light in Active Gain Composite Materials of Metal Nanoparticles: Ultralarge Group Index‐Bandwidth Product Predicted, Annalen der Physik, 529 (2017) 1700103. 10.1002/andp.201700103
##[36] A.E. Balaev, K.N. Dvoretski, V.A. Doubrovski, Determination of refractive index of rod-shaped bacteria from spectral extinction measurements, in Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (2003) 375-380. 10.1117/12.518853
##[37] F.D. Bryant, B. Seiber, P. Latimer, Absolute optical cross sections of cells and chloroplasts, Archives of biochemistry and biophysics, 135 (1969) 97-108. 10.1016/0003-9861(69)90520-7
##[38] A.E. Balaev, K. Dvoretski, V.A. Doubrovski, Refractive index of Escherichia coli cells, in Saratov Fall Meeting 2001, (2002) 253-260. 10.1117/12.475627
##[39] E. Akbari, Z. Buntat, A. Afroozeh, A. Zeinalinezhad, A. Nikoukar, Escherichia coli bacteria detection by using graphene-based biosensor, Nanobiotechnology, IET, 9 (2015) 273-279. 10.1049/iet-nbt.2015.0010
##[40] I. Chremmos, O. Schwelb, N. Uzunoglu, Photonic microresonator research and applications 156 (2010) Springer.
##[41] F. Morichetti, A. Melloni, M. Martinelli, Effects of polarization rotation in optical ring-resonator-based devices, Journal of lightwave technology, 24 (2006) 573.
##[42] C. Madsen, J.H. Zhao, Optical filter design and analysis: A signal processing approach, John Wiley & Sons Inc. US, New York, (1999)
##[43] A. Shafiee, M. Bahadoran, P. Yupapin, Analytical microring stereo system using coupled mode theory and application, Applied optics, 58 (2019) 8167-8173.
##[44] M. Bahadoran, A. Afroozeh, J. Ali, P.P. Yupapin, Slow light generation using microring resonators for optical buffer application, Optical Engineering, 51 (2012) 044601-044608. 10.1117/1.OE.51.4.044601
##[45] M. Bahadoran, J. Ali, P.P. Yupapin, Ultrafast all-optical switching using signal flow graph for PANDA resonator, Applied Optics, 52 (2013) 2866-2873.
##[46] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-Insulator microring resonator for sensitive and label-free biosensing, Optics express, 15 (2007) 7610-7615. 10.1364/OE.15.007610
##[47] Z. Tian, S.S. Yam, H.-P. Loock, Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber, Optics letters, 33 (2008) 1105-1107. 10.1364/OL.33.001105
##[48] G. Yin, S. Lou, H. Zou, Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section," Optics & Laser Technology, 45 (2013) 294-300. 10.1016/j.optlastec.2012.06.032
##[49] J.-F. Ding, A.P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor, IEEE Photonics Technology Letters, vol. 17 (2005) 1247-1249. 10.1109/LPT.2005.847437
##[50] S. Zhang, W. Zhang, P. Geng, S. Gao, Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications, Optics Communications, 288 (2013) 47-51. 10.1016/j.optcom.2012.09.057
##[51] S. Gao, W. Zhang, H. Zhang, P. Geng, W. Lin, B. Liu, et al., Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature, Sensors and Actuators B: Chemical, 188 (2013) 931-936. 10.1016/j.snb.2013.07.082
##[52] K. Ni, X. Dong, C.C. Chan, T. Li, L. Hu, W. Qian, Miniature refractometer based on Mach–Zehnder interferometer with waist-enlarged fusion bitaper, Optics Communications, 292 (2013) 84-86. 10.1016/j.optcom.2012.11.012
##[53] A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, et al., Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing, Journal of lightwave technology, 29 (2011) 2985-2991. 10.1109/JLT.2011.2165528
##[54] X. Wang, Z. Xu, N. Lu, J. Zhu, G. Jin, Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure, Optics Communications, 281 (2008) 1725-1731. 10.1016/j.optcom.2007.11.040