[1] M. Janik, M. Koba, A. Celebańska, W.J. Bock, M. Śmietana, Live E. coli bacteria label-free sensing using a microcavity in-line Mach-Zehnder interferometer,
Scientific reports, 8 (2018) 1-8.
https://doi.org/10.1038/s41598-018-35647-2
##[2] N. Allocati, M. Masulli, M.F. Alexeyev, and C. Di Ilio, Escherichia coli in Europe: An Overview,
International Journal of Environmental Research and Public Health, 10 (2013) 6235-6254.
https://doi.org/10.3390/ijerph10126235
##[3] K. Rijal, A. Leung, P.M. Shankar, R. Mutharasan, Detection of pathogen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,
Biosensors and Bioelectronics, 21 (2005) 871-880.
https://doi.org/10.1016/j.bios.2005.02.006
##[4] P. Arora, A. Sindhu, N. Dilbaghi, A. Chaudhury, Biosensors as innovative tools for the detection of food borne pathogens,
Biosensors and Bioelectronics, 28 (2011) 1-12.
https://doi.org/10.1016/j.bios.2011.06.002
##[5] B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel
, et al., Recent advances in recognition elements of food and environmental biosensors: a review,
Biosensors and Bioelectronics, 26 (2010) 1178-1194.
https://doi.org/10.1016/j.bios.2010.07.033
##[6] A. Shabani, M. Zourob, B. Allain, C.A. Marquette, M.F. Lawrence, R. Mandeville, Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria,
Analytical chemistry, 80 (2008) 9475-9482.
https://doi.org/10.1021/ac801607w
##[7] S. Balasubramanian, I.B. Sorokulova, V.J. Vodyanoy, A.L. Simonian, Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study,
Biosensors and Bioelectronics, 22 (2007) 948-955.
https://doi.org/10.1016/j.bios.2006.04.003
##[8] N. Idil, M. Hedström, A. Denizli, B. Mattiasson, Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli,
Biosensors and Bioelectronics, 87 (2017) 807-815.
https://doi.org/10.1016/j.bios.2016.08.096
##[9] A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection,
Nature Communications, 10 (2019) 3737.
https://doi.org/10.1038/s41467-019-11644-5
##[10] Q. Xiang, The Development and Application of Electrochemical Biosensor, Berlin, Heidelberg, (2011) 215-220. https://doi.org/10.1007/978-3-642 24022-5_36
##[12] Y. Luo, E.C. Alocilja, Portable nuclear magnetic resonance biosensor and assay for a highly sensitive and rapid detection of foodborne bacteria in complex matrices,
Journal of Biological Engineering, 11 (2017) 14.
https://doi.org/10.1186/s13036-017-0053-8
##[13] M. Bahadoran, M. Aziz, A. Noorden, M. Jalil, J. Ali, P. Yupapin, Novel Approach to Determine the Young's Modulus in Silicon-On-Insulator Waveguide using Microring Resonator, Digest Journal of Nanomaterials and Biostructures, 9 (2014) 1095-1104. https://chalcogen.ro/1095_Bahadoran.pdf
##[15] M. Smietana, W.J. Bock, P. Mikulic, A. Ng, R. Chinnappan, M. Zourob, Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings, Optics Express, 19 (2011) 7971-7978.
##[16] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers
, et al., Nanostructured plasmonic sensors"
Chemical reviews, 108 (2008) 494-521.
https://doi.org/10.1021/cr068126n
##[17] B. Luff, J.S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, Integrated optical mach-zehnder biosensor, Journal of lightwave technology, 16 (1998) 583.
##[18] M.E. Bosch, A.J.R. Sánchez, F.S. Rojas, C.B. Ojeda, Recent development in optical fiber biosensors,
Sensors, 7 (2007) 797-859.
https://doi.org/10.3390/s7060797
##[19] M. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Optics express, 15 (2007) 4530-4535. https://doi.org/10.1364/OE.15.004530
##[20] D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, et al., Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach," Optics letters, 35 (2010) 2771-2773. 10.1364/ol.35.002771.
##[21] R. Bernini, S. Campopiano, L. Zeni, Silicon micromachined hollow optical waveguides for sensing applications,
IEEE Journal of selected topics in quantum electronics, 8 (2002) 106-110.
10.1109/2944.991405
##[22] H.J. Patrick, A.D. Kersey, F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction," Journal of lightwave technology, 16 (1998) 1606.
##[23] A.F.A. Noordena, M. Bahadorana, K. Chaudharya, M.S. Aziza, M A. Jalilb, J. Alia
, et al., Optical bistability in all-pass Mobius configuration microring resonator,
J. Teknol, 76 (2015) 101-108.
https://doi.org/10.11113/jt.v76.5835
##[24] Y. Kokubun, T. Kato, Series-coupled and parallel-coupled add/drop filters and FSR extension, in Photonic Microresonator Research and Applications, ed: Springer, (2010) pp. 87-113. https://doi.org/10.1007/978-1-4419-1744-7_4
##[25] M. Bahadoran, A. Afroozeh, J.B. Ali, P.P. Yupapin, Slow light generation using microring resonators for optical buffer application,
Optical Engineering, 51 (2012) 044601.
https://doi.org/10.1117/1.OE.51.4.044601
##[26] M. Bahadoran, A. Noorden, K. Chaudhary, F. Mohajer, M. Aziz, S. Hashim
, et al., Modeling and analysis of a microresonating biosensor for detection of Salmonella bacteria in human blood,
14 (2014) 12885-12899.
10.3390/s140712885
##[27] M. Bahadoran, Analysis of InGaAsP-InP Double Microring Resonator using Signal Flow Graph Method, Journal of Optoelectronical Nanostructures Spring, 3 (2018).
##[28] S.M. Yoo, S.Y. Lee, Optical biosensors for the detection of pathogenic microorganisms,
Trends in biotechnology, 34 (2016) 7-25.
10.1016/j.tibtech.2015.09.012
##[29] J. Grandidier, G.C. Des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber
, et al., Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,
Applied Physics Letters, 96 (2010) 063105.
10.1063/1.3300839
##[30] L. Chen, X. Li, G. Wang, A hybrid long-range plasmonic waveguide with sub-wavelength confinement,
Optics Communications, 291 (2013) 400-404.
10.1016/j.optcom.2012.11.031
##[31] V.J. Sorger, Z. Ye, R.F. Oulton, Y. Wang, G. Bartal, X. Yin
, et al., Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,
Nature Communications, 2 (2011) 331.
10.1038/ncomms1315
##[32] E.D. Palik, Handbook of optical constants of solids 3 (1998) Academic press.
##[33] T. Baba, Y. Kokubun, Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,
IEEE Journal of Quantum electronics, 28 (1992) 1689-1700.
10.1109/3.142556
##[34] R. Sinha, R. Bhattacharyya, Analysis and design of hybrid ARROW-B plasmonic waveguides, JOSA A 30 (2013) 1502-1507 .10.1364/JOSAA.30.001502
##[35] K.H. Kim, S.H. Choe, Slow and Stopped Light in Active Gain Composite Materials of Metal Nanoparticles: Ultralarge Group Index‐Bandwidth Product Predicted,
Annalen der Physik, 529 (2017) 1700103.
10.1002/andp.201700103
##[36] A.E. Balaev, K.N. Dvoretski, V.A. Doubrovski, Determination of refractive index of rod-shaped bacteria from spectral extinction measurements, in
Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV, (2003) 375-380.
10.1117/12.518853
##[37] F.D. Bryant, B. Seiber, P. Latimer, Absolute optical cross sections of cells and chloroplasts,
Archives of biochemistry and biophysics, 135 (1969) 97-108.
10.1016/0003-9861(69)90520-7
##[38] A.E. Balaev, K. Dvoretski, V.A. Doubrovski, Refractive index of Escherichia coli cells, in
Saratov Fall Meeting 2001, (2002) 253-260.
10.1117/12.475627
##[39] E. Akbari, Z. Buntat, A. Afroozeh, A. Zeinalinezhad, A. Nikoukar, Escherichia coli bacteria detection by using graphene-based biosensor,
Nanobiotechnology, IET, 9 (2015) 273-279.
10.1049/iet-nbt.2015.0010
##[40] I. Chremmos, O. Schwelb, N. Uzunoglu, Photonic microresonator research and applications 156 (2010) Springer.
##[41] F. Morichetti, A. Melloni, M. Martinelli, Effects of polarization rotation in optical ring-resonator-based devices, Journal of lightwave technology, 24 (2006) 573.
##[42] C. Madsen, J.H. Zhao, Optical filter design and analysis: A signal processing approach, John Wiley & Sons Inc. US, New York, (1999)
##[43] A. Shafiee, M. Bahadoran, P. Yupapin, Analytical microring stereo system using coupled mode theory and application, Applied optics, 58 (2019) 8167-8173.
##[44] M. Bahadoran, A. Afroozeh, J. Ali, P.P. Yupapin, Slow light generation using microring resonators for optical buffer application,
Optical Engineering, 51 (2012) 044601-044608.
10.1117/1.OE.51.4.044601
##[45] M. Bahadoran, J. Ali, P.P. Yupapin, Ultrafast all-optical switching using signal flow graph for PANDA resonator, Applied Optics, 52 (2013) 2866-2873.
##[46] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-Insulator microring resonator for sensitive and label-free biosensing, Optics express, 15 (2007) 7610-7615. 10.1364/OE.15.007610
##[47] Z. Tian, S.S. Yam, H.-P. Loock, Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber, Optics letters, 33 (2008) 1105-1107. 10.1364/OL.33.001105
##[48] G. Yin, S. Lou, H. Zou, Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section,"
Optics & Laser Technology, 45 (2013) 294-300.
10.1016/j.optlastec.2012.06.032
##[49] J.-F. Ding, A.P. Zhang, L.-Y. Shao, J.-H. Yan, S. He, Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,
IEEE Photonics Technology Letters, vol.
17 (2005) 1247-1249.
10.1109/LPT.2005.847437
##[50] S. Zhang, W. Zhang, P. Geng, S. Gao, Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,
Optics Communications, 288 (2013) 47-51.
10.1016/j.optcom.2012.09.057
##[51] S. Gao, W. Zhang, H. Zhang, P. Geng, W. Lin, B. Liu
, et al., Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,
Sensors and Actuators B: Chemical, 188 (2013) 931-936.
10.1016/j.snb.2013.07.082
##[52] K. Ni, X. Dong, C.C. Chan, T. Li, L. Hu, W. Qian, Miniature refractometer based on Mach–Zehnder interferometer with waist-enlarged fusion bitaper,
Optics Communications, 292 (2013) 84-86.
10.1016/j.optcom.2012.11.012
##[53] A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang
, et al., Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing,
Journal of lightwave technology, 29 (2011) 2985-2991.
10.1109/JLT.2011.2165528
##[54] X. Wang, Z. Xu, N. Lu, J. Zhu, G. Jin, Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,
Optics Communications, 281 (2008) 1725-1731.
10.1016/j.optcom.2007.11.040