برخوردهای چند کینکی در مدل تغییر شکل یافته هایپربولیک سینوسی φ^4

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 باشگاه پژوهشگران جوان، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران

2 گروه فیزیک دانشکده شهید منتظری، دانشگاه فنی و حرفه‌ای خراسان رضوی، ایران

3 گروه فیزیک، دانشگاه پیام نور ، ایران

چکیده

در این مقاله، برخوردهای دو تا پنج کینکی مدل انتگرال ناپذیر سینوسی هایپربولیک φ^4 که مدلی تغییر شکل یافته از مدل کاملا شناخته شده φ^4 است، را به صورت عددی مطالعه می‌کنیم . در این بررسی حالت‌های مقید و پراکنده رویت شدند که به تعداد کینک و شرایط اولیه بستگی دارند. علاوه بر آن، نتایج نشان می‌دهند که چگالی انرژی در نقطه برخورد، بیشینه است که برای تعداد فرد (زوج) بیشتر به صورت چگالی انرژی پتانسیل (چگالی انرژی جنبشی) ظاهر می‌شود. مقادیر چگالی انرژی کل و تغییر شکل در هر دو مدل φ^4 و سینوسی هایپربولیک φ^4 تقریبا یکسان هستند، اما مقادیر چگالی انرژی جنبشی در برخوردهای با تعداد فرد و چگالی انرژی پتانسیل در برخوردهای با تعداد زوج برای این دو مدل متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Multi kinks collision in sinh-deformed φ^4 model

نویسندگان [English]

  • Aliakbar Moradi Marjaneh 1
  • Mahdy Ebrahimi Loushab 2
  • Farhad Mohammad Jafari 3
1 Department of physics, Islamic Azad University, Quchan Branch
2 Department of Physics, Faculty of Montazeri Technical and Vocational University (TVU), Khorasan Razavi, IRAN
3 Faculty member, Department of Physics, Payam Noor University,
چکیده [English]

We study the kinks collisions up to five kinks and antikinks of the sinh-deformed φ^4 model numerically. In our simulations we observe reflection and bound state formation depending on the number of kinks and their initial conditions. The results show that the energy density at the point of collision is the maximum, which for odd (even) kinks appears in the form of potential energy density (kinetic energy density). The values of total energy density and elastic strain energy density of the φ^4 and sinh-deformed φ^4 models are almost the same, but the values of kinetic energy density in collisions of odd number of kinks and potential energy density in collisions of even number of kinks are different for these two models.

کلیدواژه‌ها [English]

  • 05.45.Yv Solitons
  • 11.10.Lm Nonlinear or nonlocal theories and models
  • 45.50.Tn Collisions
 
[1] F. Calogero. Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials, Journal of Mathematical Physics 12 (1971) 419-436.          https://doi.org/10.1063/1.1665604
##[2] F. Calogero. Exactly solvable one dimensional many-body problems, Lettere al Nuovo Cimento 13 (1975) 411-416.             https://doi.org/10.1007/BF02790495

##[3] P.D. Lax. Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics 28 (1968) 141-188.

 

##[4] S.N.M. Ruijsenaars, H. Schneider: A new class of integrable systems and its relation to solitons, Annals of Physics170 (1986) 370-405.

##[5] B. Sutherland: Exact results for a quantum many-body problem in one dimension I, Physical Review A 4 (1971) 2019-2021.                       https://doi.org/10.1103/PhysRevA.4.2019
##[6] B. Sutherland: Exact results for a quantum many-body problem in one dimension.II, Physical Review A 5 (1972) 1372-1376.            https://doi.org/10.1103/PhysRevA.5.1372
##[7] S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee, Y.S. Kivshar. Nonlinear switching and solitons in pt-symmetric photonic systems. Laser and Photonics Reviews 10 (2016) 2:177–213.           https://doi.org/10.1002/lpor.201500227
##[8] J. Pfeiffer, M. Schuster, A.A. Abdumalikov, A.V. Ustinov. Observation of soliton fusion in a josephson array. Physical Review Letter 96 (2006)034103. https://doi.org/10.1103/PhysRevLett.96.034103
##[9] N. Manton, P. Sutcliffe. Topological solitons, Cambridge University Press, (2004).
##[10] H. Weigel. Chiral soliton models for baryons, vol. 743. Springer, (2007).
##[11] A. Moradi Marjaneh, D. Saadatmand, I. Evazzade, R.I. Babicheva, E.G. Soboleva, N. Srikanth, Kun Zhou, E.A. Korznikova, S.V. Dmitriev. Mass transfer in Frenkel-Kontorova chain initiated by molecule impact, Physical Review E 98 (2018) 023003.                https://doi.org/10.1103/PhysRevE.98.023003
##[12] V. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects  Cambridge U.K, Cambridge, 2000.          
 
##[13] L.D. Landau, Theory of Phase Transitions, Journal of Experimental and Theoretical physics 7 (1937) 19.
##[14] V.L. Ginzburg, L.D. Landau, Theory of Superconductivity, Journal of Experimental and Theoretical physics 20 (1950) 1064.
##[15] A. Khare, I.C. Christov, A. Saxena, Successive phase transitions and kink solutions in phi8, phi19 and phi12 field theories, Physical Review E 90 (2014) 023208.             https://doi.org/10.1103/PhysRevE.90.023208
 [16] V.A. Gani, A.A. Kirillov, S.G. Rubin, Classical transitions with the topological number changing in the early Universe, Journal of Cosmology and Astroparticle Physics 04 (2018) 042.                                      https://doi.org/10.1088/1475-7516/2018/04/042
 ##
[17] D. Bazeia, L. Losano, J.M.C. Malbouisson, Deformed defects, Physical Review D 66 (2002) 101701.                       https://doi.org/10.1103/PhysRevD.66.101701
##[18] C. A. Almeida, D. Bazeia, L. Losano and J. M. C. Malbouisson, New results for deformed defects, Physical Review D  69 (2004) 067702. https://doi.org/10.1103/PhysRevD.69.067702
##[19] D. Bazeia, M.A. Gonzalez Leon, L. Losano, J. Mateos Guilarte, Deformed defects for scalar fields with polynomial interactions, Physical Review D 73 (2006) 10008.                https://doi.org/10.1103/PhysRevD.73.105008
##

[20] R.H. Goodman, R. Haberman, Kink-Antikink Collisions in the φ4 equation: The n-Bounce Resonance and the Separatrix Map, SIAM Journal on Applied Dynamical Systems

4 (2005) 1195.               https://doi.org/10.1137/050632981
 
##[21] A. Moradi Marjaneh, D. Saadatmand, K. Zhou, S.V. Dmitriev, M.E. Zomorrodian, High energy density in the collision of N kinks in the φ4 model, Communications in Nonlinear Science and Numerical Simulation 49 (2017)  30. https://doi.org/10.1016/j.cnsns.2017.01.022
 
##[22] P. Dorey, A. Halavanau, L. Mercer, T. Romanczukiewicz, Y. Shnir, Boundary scattering in the phi4 model, Journal of High Energy Physics 05 (2017) 107.                         https://doi.org/10.1007/JHEP05(2017)107
##[23]P. Dorey, T. Romanczukiewicz, Resonant kink–antikink scattering through quasinormal modes, Physics  Letter B 779 (2018) 117. https://doi.org/10.1016/j.physletb.2018.02.003
##[24] S. Hoseinmardy, N. Riazi, Inelastic collision of kinks and antikinks in the φ6 system, International Journal of Modern Physics A 25(2010)3261.                https://doi.org/10.1142/S0217751X10049712
##[25] P. Dorey, K. Mersh, T. Romanczukiewicz, Y. Shnir, Kink-antikink collisions in the φ6 model, Physical Review Letter 107 (2011) 091602. https://doi.org/10.1103/PhysRevLett.107.091602
##[26] V.A. Gani, A.E. Kudryavtsev, M.A. Lizunova, Kink interactions in the (1+1)-dimensional phi6 model, Physical Review D  89 (2014)125009. https://doi.org/10.1103/PhysRevD.89.125009
##[27] I. Takyi, H. Weigel, Collective coordinates in one-dimensional soliton models revisited, Physical Review D 94 (2016) 085008. https://doi.org/10.1103/PhysRevD.94.085008
##[28] A. Moradi Marjaneh, V.A. Gani, D. Saadatmand, S.V. Dmitriev, K. Javidan, Multi-kink collisions in the phi6 model, Journal of High Energy Physics 07 (2017) 028. https://doi.org/10.1007/JHEP07(2017)028
##[29] A. Demirkaya, R. Decker, P.G. Kevrekidis, I.C. Christov, A. Saxena, Kink dynamics in a parametric phi6 system: A model with controllably many internal modes, Journal of High Energy Physics 12 (2017) 071.             https://doi.org/10.1007/JHEP12(2017)071
##[30] F.C. Lima, F.C. Simas, K.Z. Nobrega, A.R. Gomes, Boundary scattering in the phi6 model, Journal of High Energy Physics 10 (2019) 147.             https://doi.org/10.1007/JHEP10(2019)147
##[31] V.A. Gani, V. Lensky, M.A. Lizunova, Kink excitation spectra in the (1+1)-dimensional phi8 model, Journal of High Energy Physics 08 (2015) 147.       https://doi.org/10.1007/JHEP08(2015)147
##[32] I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, R.V. Radomskiy, Long-range interactions of kinks, Physical Review D 67 (2019) 414. https://doi.org/10.1103/PhysRevD.99.016010
##[33] I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, A. Khare, A. Saxena, Kink-Kink and Kink-Antikink Interactions with Long-Range Tails, Physical Review Letter 122 (2019) 171601. https://doi.org/10.1103/PhysRevLett.122.171601
##[34] V.A. Gani, A. Moradi Marjaneh, P.A. Blinov,Explicit kinks in higher-order field theories, Physical Review D 101 (2020) 125017. https://doi.org/10.1103/PhysRevD.101.125017
##[35] M. Peyrard, D.K. Campbell, Kink-antikink interactions in a modified sine-Gordon model, Physica D 9 (1983) 33.             https://doi.org/10.1016/0167-2789(83)90290-7
##[36] V.A. Gani, A.E. Kudryavtsev, Kink-antikink interactions in the double sine-Gordon equation and the problem of resonance frequencies, Physical Review E 60 (1999) 3305.https://doi.org/10.1103/PhysRevE.60.3305
##[37] A. Moradi Marjaneh, A. Askari, D. Saadatmand, S.V. Dmitriev, Extreme values of elastic strain and energy in sine-Gordon multi-kink collisions, The European Physical Journal B 91 (2018) 22.   https://doi.org/10.1140/epjb/e2017-80406-y
##[38] V.A. Gani, A. Moradi Marjaneh, D. Saadatmand, Multi-kink scattering in the double sine-Gordon model, The European Physical Journal  C 79 (2019) 620. https://doi.org/10.1140/epjc/s10052-019-7125-5
##[39] D. Bazeia, L. Losano, R. Menezes, R. da Rocha, Study of models of the sine-Gordon type in flat and curved spacetime, The European Physical Journal C 73 (2013) 2499.             . https://doi.org/10.1140/epjc/s10052-013-2499-2
##[40] Y. Zhong, Y.-X. Liu, K-field kinks: stability, exact solutions and new features, Journal of High Energy Physics 10 (2014) 041. https://doi.org/10.1007/JHEP10(2014)041
##[41] T.S. Mendonca, H.P. de Oliveira, The collision of two-kinks defects, Journal of High Energy Physics 09 (2015) 120.       . https://doi.org/10.1007/JHEP09(2015)120
##[42] F.C. Simas, A.R. Gomes, K.Z. Nobrega, J.C. R.E. Oliveira, Suppression of two-bounce windows in kink-antikink collisions, Journal of High Energy Physics 09 (2016) 104. https://doi.org/10.1007/JHEP09(2016)104
##[43] D. Bazeia, E. Belendryasova, V.A. Gani, Scattering of kinks of the sinh-deformed phi4 model, The European Physical Journal C 78 (2018) 340. https://doi.org/10.1140/epjc/s10052-018-5815-z
##[44] D. Bazeia, A.R. Gomes, K.Z. Nobrega, F.C. Simas, Kink scattering in a hybrid model, Physics Letter B 793 (2019) 26.    https://doi.org/10.1016/j.physletb.2019.04.013
##[45] Y. Zhong, R.-Z. Guo, C.-E. Fu, Y.-X. Liu, Kinks in higher derivative scalar field theory, Physics Letter B  782 (2018) 346.                https://doi.org/10.1016/j.physletb.2018.05.048
##[46] D. Bazeia, A.R. Gomes, K.Z. Nobrega, F.C. Simas, Kink scattering in hyperbolic models, International Journal of Modern Physics A34 (2019) 1950200.          https://doi.org/10.1142/S0217751X19502002
##[47] Y. Zhong, X.-L. Du, Z.-C. Jiang, Y.-X. Liu, Y.-Q. Wang, Collision of two kinks with inner structure, Journal of High Energy Physics 02 (2020) 153.       https://doi.org/10.1007/JHEP02(2020)153
##[48] A. Alonso-Izquierdo, D. Bazeia, L. Losano and J. Mateos Guilarte, New models for two real scalar fields and their kinklike solutions, Advances in High Energy Physics 2013 (2013) 183295.                                            https://doi.org/10.1155/2013/183295
##[49] H. Katsura, Composite-kink solutions of coupled nonlinear wave equations, Physical  Review D 89 (2014) 085019.          https://doi.org/10.1103/PhysRevD.89.085019
##[50] A. Alonso-Izquierdo, Reflection, transmutation, annihilation, and resonance in two-component kink collisions, Physical Review D 97 (2018) 045016.          https://doi.org/10.1103/PhysRevD.97.045016
 

##[51] A. Alonso-Izquierdo, Kink dynamics in the MSTB Model, Physica Scripta94 (2019) 085302.                               https://doi.org/10.1088/1402-4896/ab1184

##[52] A. Alonso-Izquierdo, Asymmetric kink scattering in a two-component scalar field theory model, Communications in Nonlinear Science and Numerical Simulation 7 (2019) 200.         https://doi.org/10.1016/j.cnsns.2019.04.001
##[53] V.A. Gani, M.A. Lizunova, R.V. Radomskiy, Scalar triplet on a domain wall: an exact solution, Journal of High Energy Physics   04 (2016) 043.     https://doi.org/10.1007/JHEP04(2016)043
##[54] J. Izaac, J. Wang, Computational Quantum Mechanics (Part of the Undergraduate Lecture Notes in Physics book series), Springer, (2018).