شبیه‌سازی دینامیک مولکولی تأثیر نیکل، کروم و پارامترهای ساختاری بر مشخصات تنش-کرنش آلیاژ آهن-نیکل-کروم در دماهای مختلف

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

دانشکده مهندسی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

فولاد ضدزنگ آستنیتی بخاطر خواص مکانیکی و مقاومت عالی در مقابل خوردگی در حضور آب و بخارآب، بطور گسترده‌ای در ساخت مخزن راکتور‌های هسته‌ای تحت‌فشاراستفاده می‌شوند. عناصر غالب در آلیاژهای آستنیتی، آهن، نیکل و کروم می‌باشند. در این پژوهش، نقش نیکل و کروم و همچنین پارامترهای ساختاری آلیاژ بر رفتار تنش-کرنش آلیاژهای دوتایی آهن-نیکل، آهن-کروم و سه‌تایی آهن-نیکل-کروم در دماهای مختلف با استفاده از دینامیک مولکولی و با دو هنگرد دما- فشار ثابت و دما-حجم ثابت مورد بررسی قرار گرفت. نتایج شبیه‌سازی نشان می‌دهد که استفاده از هنگرد دما-حجم ثابت منجر به نتایجی با خطای زیر 10 درصد نسبت به داده‌های تجربی می‌شود. منحنی‌های تنش-کرنش آلیاژهای دوتایی آهن-کروم، آهن-نیکل و سه‌تایی آهن-نیکل-کروم با مقادیر مختلف نیکل و کروم دلالت بر این دارد که افزایش مقدار نیکل و کروم باعث کاهش مدول یانگ می‌شود. این نتایج همچنین نشان می‌دهند که با افزایش مقدار کروم مقدار تنش تسلیم ماده کاهش پیدا می‌کند درحالی‌که با افزایش مقدار نیکل مقدار تنش تسلیم افزایش می‌یابد. شبیه‌سازی‌های اثر اندازه جعبه شبیه-سازی، آهنگ کرنش و افزایش دما بر رفتار تنش-کرنش، مدول یانگ و تنش تسلیم نیز مورد مطالعه قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Molecular dynamic simulation of effects of nickel, chromium and structural parameters on stress-strain characteristics of Fe-Ni-Cr Alloys in different temperature

نویسندگان [English]

  • Ghasem Alahyarizadeh
  • AliAkbar Hasanzadeh
Faculty of Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Austenitic stainless steel is widely used in the manufacture of reactor pressure vessels due to its mechanical properties and excellent resistance to corrosion in the water and vapor streams. Iron, nickel, and chromium are the main constituents of austenitic alloys. In this research, the role of nickel and chromium, as well as structural parameters on the stress-strain behavior of binary iron-nickel, iron-chromium, and ternary Fe-Ni-Cr alloys at different temperatures, were investigated by using molecular dynamics with two NVT and NPT ensembles. The simulation results show that the use of NVT ensemble leads to results with an error below 10% of the experimental data. Stress-strain curves of Fe-Cr, Fe-Ni, and Fe-Ni-Cr with different amounts of Ni and Cr indicate that increasing the amount of nickel and chromium will reduce Young's modulus. These results also show that Yield stress reduces by increasing Cr, while increases by increasing Ni. The effect of the size of the simulation box, the strain ratio and temperature on stress-strain behavior, Young's modulus, and Yield stress were also studied.

کلیدواژه‌ها [English]

  • Molecular dynamics
  • Fe-Ni-Cr austenitic alloys
  • Stress-strain curves
  • Young's modulus
  • Yield stress
 
[1] W. Hoffelner, Materials for nuclear plants : from safe design to residual life assessments, Springer, )2013(.
 
[2] G.S. Was, Fundamentals of Radiation Materials Science, Springer Berlin Heidelberg, Berlin, Heidelberg, (2007).
 
[3] S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today. 12 (2009) 12–19.
 
[4] International Atomic Energy Agency, Assessment and management of ageing of major nuclear power plant components important to safety : PWR pressure vessels, International Atomic Energy Agency,( 2007).
 
[5] International Atomic Energy Agency, Integrity of reactor pressure vessels in nuclear power plants : assessment of irradiation embrittlement effects in reactor pressure vessel steels, International Atomic Energy Agency, (2009).
 
[6] W.L. Server, R.K. Nanstad, Reactor pressure vessel (RPV) design and fabrication: the case of the USA, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 3–25.
 
[7] Y. Tanaka, Reactor pressure vessel (RPV) components: processing and properties, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 26–43.
 
[8] M. Brumovsky, WWER-type reactor pressure vessel (RPV) materials and fabrication, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 44–54.
 
[9] M. Brumovsky, Embrittlement of reactor pressure vessels (RPVs) in WWER-type reactors, in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 107–131.
 
[10] M. Tomimatsu, T. Hirota, T. Hardin, P. Todeschini, Embrittlement of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs), in: Irradiat. Embrittlement React. Press. Vessel. Nucl. Power Plants, Elsevier, (2015) 57–106.
 
[11] M.F. McGuire, Stainless steels for design engineers, ASM International, (2008).
 
[12] P. Marshall, Austenitic stainless steels : microstructure and mechanical properties, Elsevier Applied Science, (1984).
 
[13] M. Kaladhar, K.V. Subbaiah, C.H.S. Rao, Machining of austenitic stainless steels - a review, International Journal of Machining and Machinability of Materials 12 (2012) 178.
 
[14] P.J. Maziasz, J.T. Busby, Properties of Austenitic Steels for Nuclear Reactor Applications, Journal of Nuclear Materials (2012) 267–283.
 
[15] Z.X. Grujicic M, Analysis of Fe-Ni-Cr-N austenite using the Embedded-Atom Method, Calphad 17 (1993) 383–413.
 
[16] Z.X. Grujicic M, Atomistic simulation of thermally activated glide of dislocations in Fe-Ni-Cr-N austenite, Materials Science and Engineering A 190 (1995) 87–98.
 
[17] M. GRUJICIC, Atomistic simulation of dislocation core structure and dynamics in Fe–Ni–Cr–N austenite, Journal of Materials Science 32 (1997) 1749–1757.
 
[18] A. V. Bakaev, D.A. Terent’ev, E.E. Zhurkin, P.Y. Grigor’ev, Molecular dynamics simulation of the interaction of dislocations with radiation-induced defects in Fe-Ni-Cr austenitic alloys, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 7 (2013) 211–217.
 
[19] A. V. Bakaev, D.A. Terentyev, P.Y. Grigorev, E.E. Zhurkin, Atomistic simulation of the interaction between mobile edge dislocations and radiation-induced defects in Fe-Ni-Cr austenitic alloys, , Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 8(2014) 220–228.
 
[20] A. V. Bakaev, D.A. Terentyev, P.Y. Grigor’ev, E.E. Zhurkin, Interaction between mobile dislocations and perfect dislocation loops in Fe-Ni-Cr austenitic alloy systems, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 9 (2015) 290–299.
 
[21] B.A. Terentyev D, Interaction of a screw dislocation with Frank loops in Fe–10Ni–20Cr alloy, Journal of Nuclear Materials 442 (2013) 208–217.
 
[22] K. Tong, F. Ye, M. Gao, M.K. Lei, C. Zhang, Interatomic potential for Fe–Cr–Ni–N system based on the second nearest-neighbor modified embedded-atom method, Molecular Simulation 42 (2016) 1256–1262.
 
[23] G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, A. Bakaev, Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy, Modelling and Simulation in Materials Science and Engineering 19 (2011).
 
[24] G. Bonny, N. Castin, D. Terentyev, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy, Modelling and Simulation in Materials Science and Engineering 21 (2013).
 
[25] S. Jalili, Computer simulations (Molecular Dynamics & Monte Carlo) second edition, K. N. Toosi University of technology (2011).
 
[26] B.J. Alder, T.E. Wainwright, Studies in Molecular Dynamics. I. General Method, Journal of Chemical Physics 31 (1959) 459–466.
 
[27] A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev. 136 (1964) A405–A411.
 
[28] J.J. Adams, D.S. Agosta, R.G. Leisure, H. Ledbetter, Elastic constants of monocrystal iron from 3 to 500 K, Journal of Applied Physics 100 (2006) 113530.
 
[29] N.T. Hai, Elastic modulus of F.C.C. and B.C.C crystals investigated by a statistical moment method at low temperature range,
International Atomic Energy Agency (IAEA), 36 (2004).
 
[30] D. Su, Y.-L. He, J.-Q. Liu, X.-G. Lu, Establishment of the Elastic Property Database of Fe-base Alloys, in: Procceeding The First International Conference on Information Sciences, Machinery, Materials and Energy  (2015).
 
[31] S.M. Rassoulinejad-Mousavi, Y. Mao, Y. Zhang, Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties, Journal of Applied Physics 119 (2016).
 
[32] F. Luo, X. Chen, L. Cai, Q.W.-J.A.M. Sci, U. 2011, Thermoelastic properties of nickel from molecular dynamic simulations, Journal of Atomic and Molecular Sciences 2 (2011) 10–19.
 
[33] A. Teklu, H. Ledbetter, S. Kim, L.A. Boatner, M. McGuire, V. Keppens, Single-crystal elastic constants of Fe-15Ni-15Cr alloy, Metallurgical and Materials Transactions A 35 (2004) 3149–3154.
 
[34] G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba, Iron chromium potential to model high-chromium ferritic alloys, Philosophical Magazine 91 (2011) 1724–1746.
 
[35] G. Bonny, R.C. Pasianot, L. Malerba, Fe–Ni many-body potential for metallurgical applications, Modelling and Simulation in Materials Science and Engineering 17 (2009).
 
[36] K.C. Ryoo D, Kang N, Effect of Ni content on the tensile properties and strain-induced martensite transformation for 304 stainless steel, Materials Science and Engineering A 528 (2011) 2277–2281.
 
[37] J. Byggmästar, F. Granberg, A. Kuronen, K. Nordlund, K.O.E. Henriksson, Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations,  Journal of Applied Physics 117 (2015).
 
[38] S.G. Mao W, Campbell A, Heinz D, Phase relations of Fe–Ni alloys at high pressure and temperature, Physics of the Earth and Planetary Interiors 155 (2006) 146–151.
 
[39] W.G. Nöhring, W.A. Curtin, Thermodynamic properties of average-atom interatomic potentials for alloys, Modelling and Simulation in Materials Science and Engineering 24 (2016).