Investigation of quantum discord and local quantum uncertainty in a vertical quantum dot

Document Type : Full length research Paper


1 Department of Physics, Faculty of science, Azarbaijan Shahid Madani University, Tabriz, Iran.

2 Physics Department, Faculty of Science, Azarbaijan Shahid Madani Univesity, Tabriz, Iran

3 Physics department, Faculty of science, Azarbaijan shahid madani university, Tabriz, Iran


In this paper, we consider quantum correlations (quantum discord and
local quantum uncertainty) in a vertical quantum dot. Their dependencies on the magnetic
field and temperature are presented in detail. It is noticeable that quantum discord
and local quantum uncertainty behavior is similar to a large extent. In addition, the
time evolution of quantum discord and local quantum uncertainty under dephasing and
amplitude damping channels is investigated. It has been found that for some Belldiagonal
states quantum discord is invariant under some decoherence in a finite time
interval [Phys. Rev. Lett. 104, 200401 (2010)]. Also, our results show that quantum
discord is invariant under dephasing channel for a finite time interval in a vertical
quantum dot, while this phenomenon does not occur for local quantum uncertainty


[1] C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Quantum nonlocality without entanglement, Physical Review A 59 (1999) 1070.
[2] L. Henderson, V. Vedral, Classical, Quantum and Total Correlations, Journal of Physics A: Mathematical and Theoretical 34 (2001) 6899.
[3] H. Ollivier, W.H. Zurek, Quantum Discord: A measure of the Quantumness of Correlation, Physical Review Letters 88 (2001) 017901.
[4] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The Classical-Quantum Boundary for Correlation: Discord and Related Measures, Reviews of Modern Physics 84 (2012) 1655.
[5] M. Ali, A.R.P. Rau, G. Alber, Quantum Discord for Two-Qubit X States, Physical Review A 81 (2010) 042105.
[6] B. Li, Z.X. Wang, S.M. Fei, Quantum Discord and Geometry for a Class of Two-Qubit States, Physical Review A 83 (2011) 022321.
[7] Q. Chen, C. Zhang, S. Yu, X.X. Yi, C.H. Oh, Quantum Discord of Two-Qubit X States, Physical. Review A 84 (2011) 042313.

[8] M. Shi, C. Sun, F. Jiang, X. Yan, J. Du, Optimal Measurement for Quantum Discord of Two-Qubit States, Physical Review A 85 (2012) 064104.


[9] S. Luo and S. Fu, Geometric Measure of Quantum Discord, Physical Review A 82 (2010) 034302.

[10] J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical Approach to Quantifying Quantum Correlations, Physical Review Letters 89 (2002) 180402.
[11] M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen De and U. Sen, Local Information as a Resource in Distributed Quantum Systems, Physical Review Letters 90 (2003) 100402.

[12] D. Girolami, T. Tufarelli, G. Adesso, Characterizing Nonclassical Correlations via Local Quantum Uncertainty, Physical Review Letters 110 (2013) 240402.

[13] B. Dakic, V. Vedral, C. Brukner, Necessary and Sufficient Condition for Nonzero Quantum Discord, Physical Review Letters 105 (2010) 190502.
[14] S. Luo, Quantum discord for two-qubit systems, Physical Review A 77 (2008) 042303.
[15] P. Solinas, P. Zanardi, N. Zanghi, F. Rossi, Nonadiabatic Geometrical Quantum Gates in Semiconductor Quantum Dots, Physical Review A 67 (2003) 052309.
[16] M. Piani et al., All Entangled States are Useful for Channel Discrimination, Physical Review Letters 102 (2009) 250503.
[17] J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Classical and Quantum Correlations under Decoherence, Physical Review A 80 (2009) 044102.
[18] F.F. Fanchini et al., Non-Markovian Dynamics of Quantum Discord, arXiv: 0911-1096 (2009).
 [19] A. Hutton, S. Bose, Mediated Entanglement and Correlations in a Star Network of Interacting Spins, Physical Review A 69 (2004) 042312.

[20] F.M. Cucchietti, J.P. Paz, W.H. Zurek, Decoherence from Spin Environments, Physical Review A 72 (2005) 052113.

[21] D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio,
Decoherence Induced by Interacting Quantum Spin Baths, Physical Review A 75 (2007) 032333.

[22] H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Decay of Loschmidt Echo Enhanced by Quantum Criticality, Physical Review Letters 96 (2006) 140604.

[23] V. Vedral, Classical Correlations and Entanglement in Quantum Measurements, Physical Review Letters 90 (2003) 050401.
[24] E.P. Wigner, M.M. Yanase, Information contents of distributions‏, Proceedings of the  National. Academy of Sciences U.S.A. 49 (1963) 910.
[25] L. Guo Qin, L. Jun Tian, G. Hong Yang, Quantum Entanglement and Teleportation in a Vertical Quantum Dot, International Journal of Theoretical Physics 52 (2013) 4313-4322.

[26] Y. Huang, Quantum Discord for two-Qubit X states: Analytical formula with very small worst-case error, Physical Review A 88 (2013) 014302.


[27] F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Non-Markovian Dynamics of Quantum Discord, Physical Review A 81 (2010) 052107.

[28] H. Carmichael, An Open Systems Approach to Quantum Optics. Springer, Berlin (1993).
[29] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000).
 [30] L. Mazzola, J. Piilo, S. Maniscalco, Sudden Transition between Classical and Quantum Decoherence, Physical Review letters 104 (2010) 200401.
[31] T. Yu, J.H. Eberly, Physical Review Letters 93 (2004) 140404.
[32] E. Faizi, B. Ahansaz, Protection of Quantum Coherence in an Open V-type three-level Atom Through Auxiliary Atoms, Physica Scripta. 94 (2019) 115102.