Investigation of the parameters of modified Lorentzian distribution function on plasma expansion into vacuum process

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Sciences, University of Bojnord, Bojnord, Bojnord, Iran

Abstract

Expansion of one-dimensional collisionless plasma into vacuum is studied in absence of magnetic field. In this paper, expansions of plasmas containing initial Maxwellian and modified Lorentzian (r,q) velocity distributions and the effect of q and r parameters on expansion are investigated and then compared by use of simulation of kinetic theory equations. In this simulation code, the electrons dynamic is determined by Vlasov equation and the ions dynamic obeys fluid equations. It is shown that the plasmas containing different initial velocity distributions for the electrons will be expand with different velocities. The results show that in the cases which initial electron distribution has more energy, then the ions will have more velocity.

Keywords


[1] YU. V. Medvedev, Ion front in an expanding collisionless plasma, Plasma Physics and Controlled Fusion53 (2011) 125007. http://doi.org/10.1088/07413335/53/12/125007.##
[2] A. Diaw, P. Mora, Rarefaction shock in plasma with a bi-Maxwellian electron distribution function, Physical Review E 84 (2011) 036402. https://doi.org/10.1103/PhysRevE.84.036402
##
[3] A. Diaw, P. Mora, Thin-foil expansion into a vacuum with a two-temperature electron distribution function, Physical Review E86 (2012) 026403. https://doi.org/10.1103/PhysRevE.86.026403
##[4] K.H. Wright Jr, N.H. Stone, U. Samir, A study of plasma expansion phenomena in laboratory generated plasma wakes: preliminary results, Journal of Plasma Physics 33 (1985) 71. https://doi.org/10.1017/S0022377800002336
 ##[5] P.B. Parks. R.J. Turnbull, Effect of transonic flow in the ablation cloud on the lifetime of a solid hydrogen pellet in a plasma, Physics of Fluids21 (1978)1735. https://doi.org/10.1063/1.862088
##[6] C.T. Chang, L.W. Jorgensen, The magnetic shielding effect of a re-fuelling pellet, Nuclear Fusion20 (1980) 1978. https://doi.org/10.1088/0029-5515/15/4/004
##[7] E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, F. N.Beg, A. Machacek, P.A. Norreys, M.I.K. Santala, I. Watts, A.E. Dangor, Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids, Physical Review Letters 84 (2000) 670. https://doi.org/10.1103/PhysRevLett.84.670
##[8] M. Borghesi, J. Fuchs, S.V. Bulanov, A.J. Mackinnon, P.K. Patel, M. Roth, Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications, C:\pubs\journals\fst\a_1159 Fusion Sci. Technol. 49 (2006) 412. https:// doi.org/10.13182/FST06-A1159
##[9] J. Fuchs, P. Antici, E. D’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C.A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert, Laser-driven proton scaling laws and new paths towards energy increase, Nature Physics2 (2006) 48. https://doi.org/10.1038/nphys199
##[10] L. Robson, P.T. Simpson, R.J. Clarke, K.W.D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlström, M. Zepf, P. McKenna, Scaling of proton acceleration driven by petawatt-laser–plasma interactions, Nature Physics 3(2007) 58. http://dx.doi.org/doi:10.1038/nphys476
##[11] C. Thaury, P. Mora, A. Héron, J.C. Adam, Influence of the Weibel instability on the expansion of a plasma slab into a vacuum, Physical Review E 82 (2010) 016408. https://doi.org/10.1103/PhysRevE.82.026408
##[12] P. Mora, Plasma Expansion into a Vacuum, Physical Review Letters 90 (2003)185002.   https://doi.org/10.1103/PhysRevLett.90.185002              
##[13] T. Grismayer, P. Mora, Influence of a finite initial ion density gradient on plasma expansion into a vacuum, Physics of Plasmas13 (2006) 32103. https://doi.org/10.1063/1.2178653
##[14] J.E. Crow, P.L. Auer, L.E. Allen, The expansion of a plasma into a vacuum, Journal of Plasma Physics 14 (1975) 65. https://doi.org/10.1017/S0022377800025538
 ##[15] D. Summers, R. Thorne, The modified plasma dispersion function, Physics of Fluids , B3 (1991) 8. https://doi.org/10.1063/1.859653
##[16] V. M. Vasyliunas, Low-energy electrons on the day side of the magnetosphere, Journal of Geophysical Research 73 (1968) 2839.
##[17] A. Hasegawa, K. Mima, and M. Duong-van, Plasma distribution function in a superthermal radiation field, Physical Review Letters54 (1985) 2608. https://doi.org/10.1103/PhysRevLett.54.2608
##[18] M.N.S. Qureshi, H.A. Shah, G. Murtaza, S.J. Schwartz, F. Mahmood, Parallel propagating electromagnetic modes with the generalized (r,q) distribution function, Physics of Plasmas 11 (2004)3819.                                                              
##[19] R. Shokoohi, H. Abbasi, Influence of electron velocity distribution on the plasma expansion features, Journal of Applied Physics 106 (2009) 033309. https://doi.org/10.1063/1.3168437
##[20] Ch. Sack, H. Schamel, Plasma expansion into vacuum—A hydrodynamic approach, Physics Reports 156 (1987) 311. https://doi.org/10.1016/03701573(87)900391