[1] I.E. Khodasevych, L. Wang, A. Mitchell, G. Rosengarten, Micro- and Nanostructured Surfaces for Selective Solar Absorption, Advanced Optical Materials 3 (2015) 852-881. https://doi.org/10.1002/adom.201500063.
[5] N. Lee, T. Kim, J.-S. Lim, I. Chang and H. H. Cho, Metamaterial-Selective Emitter for Maximizing Infrared Camouflage Performance with Energy Dissipation, ACS Applied Materials & Interfaces 11 (2019) 21250-21257. https://doi.org/10.1021/acsami.9b04478.
[6] S. Han, B.J. Lee, Control of thermal radiative properties using two-dimensional complex gratings, International Journal of Heat and Mass Transfer 84 (2015) 713-721. https://doi.org/10.1016/j.ijheatmasstransfer.2015.
[8] D. Chubb, Fundamentals of thermophotovoltaic energy conversion, Elsevier (2007).
[9] T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Springer Berlin Heidelberg (2011).
[11] J.B. Chou et al., Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications, Optics Express 22 (2014) A144-A154. https://doi.org/10.1364/OE.22.00A144.
[12] A. Rostamnejadi, M. Daneshvar, Two-dimensional tungsten photonic crystal selective emitter: effects of geometrical parameters and temperature, Applied Physics B 124 (2018) 40. https://doi.org/10.1007/s00340-018-6910-4.
[13] I. Celanovic, N. Jovanovic, J. Kassakian, Two-dimensional tungsten photonic crystals as selective thermal emitters, Applied Physics Letters 92 (2008) 193101. http://dx.doi.org/10.1063/1.2927484.
[14] V. Rinnerbauer et al., Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics, Advanced Energy Materials 4 (2014) 1400334. https://doi.org/10.1002/aenm.201400334.
[15] V. Rinnerbauer et al., High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals, Optics Express 21 (2013) 11482-11491. https://doi.org/10.1364/OE.21.011482.
[16] V. Rinnerbauer et al., Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters, Journal of Vacuum Science & Technology B 31 (2013) 011802. https://doi.org/10.1116/1.4771901.
[17] A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied optics 37 (1998) 5271-5283. https://doi.org/10.1364/AO.37.005271
[18] W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press (2014).
[19] Z. Zhou, Q. Chen, P. Bermel, Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley–Queisser limit, Energy Conversion and Management 97 (2015) 63-69. https://doi.org/10.1016/j.enconman.2015.03.035.
[21] D. Peykov, The effects of capillarity on photonic crystal selective emitters, Massachusetts Institute of Technology, 2014.
[22] N. Nguyen-Huu, Y.-B. Chen, Y.-L. Lo, Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating, Optics Express 20 (2012) 5882-5890. https://doi.org/10.1364/OE.20.005882.
[23] S. Collin, F. Pardo, R. Teissier, Horizontal and vertical surface resonances in transmission metallic gratings, Journal of Optics A: Pure and Applied Optics 4 (2002) S154-S160. https://doi.org/10.1088/1464-4258/4/5/364.
[24] I. Celanovic, F. O'Sullivan, N. Jovanovic, M. Qi, J. Kassakian, 1D and 2D photonic crystals for thermophotovoltaic applications, Photonics Europe 5450 (2004). https://doi.org/10.1117/12.545539.
[26] A. Taflove, A. Oskooi, S.G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, Artech House, (2013).
[27] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: A flexible free-software package for electromagnetic simulations by the FDTD method, Computer Physics Communications 181 (2010) 687-702. https://doi.org/10.1016/j.cpc.2009.
[28] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, (2005).
[29] S.G. Johnson, Notes on perfectly matched layers (PMLs), Massachusetts Institute of Technology, (2008).
[30] V. Stelmakh et al., High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication, Applied Physics Letters 103 (2013) 123903.
[31] S. Szunerits, R. Boukherroub, Introduction to Plasmonics: Advances and Applications, Jenny Stanford Publishing, (2015).
[32] A. Webster, Notes on Metals in meep, (2011).
[33] E.D. Palik, Handbook of Optical Constants of Solids, Elsevier Science, (1998).
[34] M. Dressel, G. Gruner, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press,(2002).
[35] S. Adachi, Handbook On Optical Constants Of Metals, The: In Tables And Figures, World Scientific Publishing Company, (2012).
[36] D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic and I. Celanovic, Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Optics Express 19 (2011) A245-A257. https://doi.org/10.1364/OE.19.00A245.
[39] J.D. Jackson, Wie Classical Electrodynamics, 3rd Edition, Intern Ational Edition, John Wiley & Sons, Limited, (2005).
[40] S. Maruyama, T. Kashiwa, H. Yugami, M. Esashi, Thermal radiation from two-dimensionally confined modes in microcavities, Applied Physics Letters 79 (2001) 1393-1395. https://doi.org/10.1063/1.1397759.
[41] H. Sai, H. Yugami, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings, Applied Physics Letters 85 (2004) 3399-3401. https://doi.org/10.1063/1.1807031.
[42] H. Sai, Y. Kanamori, H. Yugami, Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures, Journal of Micromechanics and Microengineering 15 (2005) S243-S249. ttps://doi.org/10.1088/09601317/15/9/S12.
[43] V. Rinnerbauer et al., Recent developments in high-temperature photonic crystals for energy conversion, Energy & Environmental Science 5 (2012) 8815-8823. https://doi.org/10.1039/C2EE22731B.
[44] F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating, Journal of Heat Transfer 129 (2006) 11-16. https://doi.org/10.1115/1.2360594.
[45] A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, J. Luther, Radiation filters and emitters for the NIR based on periodically structured metal surfaces, Journal of Modern Optics 47 (2000) 2399-2419. https://doi.org/10.1080/09500340008230522
[47] F. Kusunoki, J. Takahara, T. Kobayashi, Qualitative change of resonant peaks in thermal emission from periodic array of microcavities, Electronics Letters 39 (2003) 23-24. https://doi.org/10.1049/el:20030004.
[48] A.K. Azad, Y. Zhao, W. Zhang, Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array, Applied Physics Letters 86 (2005) 141. https://doi.org/10.1063/1.1897842.
[49] A.A. Maradudin, I. Simonsen, J. Polanco, R.M. Fitzgerald, Rayleigh, Wood anomalies in the diffraction of light from a perfectly conducting reflection grating, Journal of Optics 18 (2016) 024004. https://doi.org/10.1088/20408978/18/2/024004.