Effect of Geometrical Parameters on thermal emission spectrum of Two-dimensional Chromium Periodic Microcavities

Document Type : Full length research Paper

Authors

Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Shahinshahr, Iran

Abstract

In this paper, the effects of structural parameters and temperature on the thermal emission properties of a square array of cylindrical nano/microcavities on chromium (Cr) slab have been investigated. The obtained results show that the enhancement and selectivity in the emissivity are depended on the coupling between thermally excited radiation with the resonance modes, surface plasmon-polariton and Bragg diffraction from the surface of the periodic nano/microcavities. For nanocavities with radius r

Keywords

Main Subjects


[1] I.E. Khodasevych, L. Wang, A. Mitchell, G. Rosengarten, Micro- and Nanostructured Surfaces for Selective Solar Absorption, Advanced Optical Materials 3 (2015) 852-881. https://doi.org/10.1002/adom.201500063.
[2] R. Kakimi, M. Fujita, M. Nagai, M. Ashida, T. Nagatsuma, Capture of a terahertz wave in a photonic-crystal slab, Nature Photonics 8 (2014) 657-663. https://doi.org/10.1038/nphoton.2014.150.
[3] M. Pan et al., Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures, Nano Energy 69 (2020) 104449. https://doi.org/10.1016/j.nanoen.2020.104449.
[4] H. Zhu et al., High-temperature infrared camouflage with efficient thermal management, Light: Science & Applications, 9 (2020) 60.  https://doi.org/10.1038/s41377-020-0300-5.
[5] N. Lee, T. Kim, J.-S. Lim, I. Chang and H. H. Cho, Metamaterial-Selective Emitter for Maximizing Infrared Camouflage Performance with Energy Dissipation, ACS Applied Materials & Interfaces 11 (2019) 21250-21257. https://doi.org/10.1021/acsami.9b04478.
[6] S. Han, B.J. Lee, Control of thermal radiative properties using two-dimensional complex gratings, International Journal of Heat and Mass Transfer 84 (2015) 713-721. https://doi.org/10.1016/j.ijheatmasstransfer.2015.
[7] R. Sakakibara et al., Practical emitters for thermophotovoltaics: a review, Journal of Photonics for Energy 9 (2019) 032713. https://doi.org/10.1117/1.JPE.9.032713.
[8] D. Chubb, Fundamentals of thermophotovoltaic energy conversion, Elsevier (2007).
[9] T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Springer Berlin Heidelberg (2011).
[10] H. Ye, H. Wang, Q. Cai, Two-dimensional VO2 photonic crystal selective emitter, Journal of Quantitative Spectroscopy and Radiative Transfer 158 (2015) 119-126. https://doi.org/10.1016/j.jqsrt.2015.01.022.
[11] J.B. Chou et al., Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications, Optics Express 22 (2014) A144-A154. https://doi.org/10.1364/OE.22.00A144.
[12] A. Rostamnejadi, M. Daneshvar, Two-dimensional tungsten photonic crystal selective emitter: effects of geometrical parameters and temperature, Applied Physics B 124 (2018) 40. https://doi.org/10.1007/s00340-018-6910-4.
[13] I. Celanovic, N. Jovanovic, J. Kassakian, Two-dimensional tungsten photonic crystals as selective thermal emitters, Applied Physics Letters 92 (2008) 193101. http://dx.doi.org/10.1063/1.2927484.
[14] V. Rinnerbauer et al., Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics, Advanced Energy Materials 4 (2014) 1400334. https://doi.org/10.1002/aenm.201400334.
[15] V. Rinnerbauer et al., High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals, Optics Express 21 (2013) 11482-11491. https://doi.org/10.1364/OE.21.011482.
[16] V. Rinnerbauer et al., Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters, Journal of Vacuum Science & Technology B 31 (2013) 011802. https://doi.org/10.1116/1.4771901.
[17] A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied optics 37 (1998) 5271-5283. https://doi.org/10.1364/AO.37.005271
[18] W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press (2014).
[19] Z. Zhou, Q. Chen, P. Bermel, Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley–Queisser limit, Energy Conversion and Management 97 (2015) 63-69. https://doi.org/10.1016/j.enconman.2015.03.035.
[20] R.T. Kivaisi, L. Stensland, Spectral selectivity of nickel and chromium rough surfaces, Applied Physics A 27 (1982) 233-238.      https://doi.org/10.1007/BF00619084.
[21] D. Peykov, The effects of capillarity on photonic crystal selective emitters, Massachusetts Institute of Technology, 2014.
[22] N. Nguyen-Huu, Y.-B. Chen, Y.-L. Lo, Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating, Optics Express 20 (2012) 5882-5890. https://doi.org/10.1364/OE.20.005882.
[23] S. Collin, F. Pardo, R. Teissier, Horizontal and vertical surface resonances in transmission metallic gratings, Journal of Optics A: Pure and Applied Optics 4 (2002) S154-S160.       https://doi.org/10.1088/1464-4258/4/5/364.
[24] I. Celanovic, F. O'Sullivan, N. Jovanovic, M. Qi, J. Kassakian, 1D and 2D photonic crystals for thermophotovoltaic applications, Photonics Europe 5450 (2004).     https://doi.org/10.1117/12.545539.
[25] B. Zhao, L. Wang, Y. Shuai, Z.M. Zhang, Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure, International Journal of Heat and Mass Transfer 67 (2013) 637-645. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047.
[26] A. Taflove, A. Oskooi, S.G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, Artech House, (2013).
[27] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: A flexible free-software package for electromagnetic simulations by the FDTD method, Computer Physics Communications 181 (2010) 687-702. https://doi.org/10.1016/j.cpc.2009.
[28] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, (2005).
[29] S.G. Johnson, Notes on perfectly matched layers (PMLs), Massachusetts Institute of Technology, (2008).
[30] V. Stelmakh et al., High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication, Applied Physics Letters 103 (2013) 123903.
[31] S. Szunerits, R. Boukherroub, Introduction to Plasmonics: Advances and Applications, Jenny Stanford Publishing, (2015).
[32] A. Webster, Notes on Metals in meep, (2011).
[33] E.D. Palik, Handbook of Optical Constants of Solids, Elsevier Science,  (1998).
[34] M. Dressel, G. Gruner, G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter, Cambridge University Press,(2002).
[35] S. Adachi, Handbook On Optical Constants Of Metals, The: In Tables And Figures, World Scientific Publishing Company, (2012).
[36] D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic and I. Celanovic, Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Optics Express 19 (2011) A245-A257. https://doi.org/10.1364/OE.19.00A245.
[37] I. Celanovic, D. Perreault, J. Kassakian, Resonant-cavity enhanced thermal emission, Physical Review B 72 (2005) 075127. https://doi.org/10.1103/PhysRevB.72.075127.
[38] K. Ujihara, Reflectivity of Metals at High Temperatures, Journal of Applied Physics, 43 (1972) 2376-238. https://doi.org/10.1063/1.1661506.
[39] J.D. Jackson, Wie Classical Electrodynamics, 3rd Edition, Intern Ational Edition, John Wiley & Sons, Limited, (2005).
[40] S. Maruyama, T. Kashiwa, H. Yugami, M. Esashi, Thermal radiation from two-dimensionally confined modes in microcavities, Applied Physics Letters 79 (2001) 1393-1395. https://doi.org/10.1063/1.1397759.
[41] H. Sai, H. Yugami, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings, Applied Physics Letters 85 (2004) 3399-3401. https://doi.org/10.1063/1.1807031.
[42] H. Sai, Y. Kanamori, H. Yugami, Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures, Journal of Micromechanics and Microengineering 15 (2005) S243-S249. ttps://doi.org/10.1088/09601317/15/9/S12.
[43] V. Rinnerbauer et al., Recent developments in high-temperature photonic crystals for energy conversion, Energy & Environmental Science 5 (2012) 8815-8823.  https://doi.org/10.1039/C2EE22731B.
[44] F. Marquier, M. Laroche, R. Carminati, J.-J. Greffet, Anisotropic Polarized Emission of a Doped Silicon Lamellar Grating, Journal of Heat Transfer 129 (2006) 11-16. https://doi.org/10.1115/1.2360594.
[45] A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, J. Luther, Radiation filters and emitters for the NIR based on periodically structured metal surfaces, Journal of Modern Optics 47 (2000) 2399-2419. https://doi.org/10.1080/09500340008230522
[46] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824-830. https://doi.org/10.1038/nature01937.
[47] F. Kusunoki, J. Takahara, T. Kobayashi, Qualitative change of resonant peaks in thermal emission from periodic array of microcavities, Electronics Letters 39 (2003) 23-24. https://doi.org/10.1049/el:20030004.
[48] A.K. Azad, Y. Zhao, W. Zhang, Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array, Applied Physics Letters 86 (2005) 141. https://doi.org/10.1063/1.1897842.
[49] A.A. Maradudin, I. Simonsen, J. Polanco, R.M. Fitzgerald, Rayleigh, Wood anomalies in the diffraction of light from a perfectly conducting reflection grating, Journal of Optics 18 (2016) 024004. https://doi.org/10.1088/20408978/18/2/024004.
[50] Y.B. Chen, Z.M. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators, Optics Communications 269 (2007) 411-417. https://doi.org/10.1016/j.optcom.2006.08.040.