محاسبه افزایش نرخ فلوئورسانس مولکول در کنار نانوآنتن مخروطی شکل

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم‌، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

با به کارگیری روش المان مرزی به بررسی افزایش نرخ فلوئورسانس به کمک نانوآنتن‌های مخروطی شکل می‌پردازیم. نانوآنتن مورد نظر از دو نانوذره از جنس طلا تشکیل شده است که در امتداد یک خط در دو طرف مولکول واقع شده‌اند. این نوع از نانوذرات پلاسمونیکی می‌توانند نرخ فلوئورسانس را به میزان قابل توجهی افزایش دهند. نرخ فلوئورسانس به راستای قرار گرفتن گسیل‌کننده، فاصله و مکان آن نسبت به نانوآنتن، راستای تابش نور فرودی و فاصله بین دو نانوذره بستگی دارد. قرار دادن مولکول در یک مکان خاص با جهت‌گیری مشخص در عمل به‌طور دقیق امکان‌پذیر نیست و با خطا همراه است. با محاسبه تغییرات ایجاد شده در طیف گسیل مولکول ناشی از جابه‌جایی مولکول نسبت به نانوآنتن، می‌توان هم‌خوانی بهتری میان داده‌های آزمایشگاهی و محاسبات تثوری به دست آورد. علاوه بر این، امکان پیش‌بینی پیکربندی آزمایشگاهی مناسب برای دستیابی به نرخ موردنظر فراهم می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculation of Fluorescence Enhancement of Molecule Close to Conical Nanoantenna

نویسندگان [English]

  • Aida Firoozi
  • Ahmad Mohammadi
Department of Physics, Faculty of Science, Persian Gulf University, Bushehr, Iran
چکیده [English]

Utilizing boundary element method (BEM), we investigate fluorescence rate enhancement by conical nanoantennas. The nanoantennas consist of two gold nanoparticles located along a line on both sides of the molecule. Molecular fluorescence rate can be considerably enhanced by nanoantennas. The fluorescence rate depends on the orientation, distance and position of molecule with respect to nanoantennas, as well as the effect of the incident light angle and the gap distance of the two nanoparticles. In practice, it is not easy to fix a precise position and orientation for a molecule in the vicinity of a nanoantenna. By allowing for the effect of molecule position and orientation on the emission spectra, one can achieve a better agreement between experimental results and theoretical calculations. Moreover, it provides important information to design the experimental configuration.

کلیدواژه‌ها [English]

  • Fluorescence Enhancement
  • Conical Nanoantenna
  • Surface plasmon resonance
[1] O. Selig, R. Siffels, Y.L.A. Rezus, Ultrasensitive ultrafast vibrational spectroscopy employing the near field of gold nanoantennas, Physical review letters 114 (2015) 233004.‏ https://doi.org/10.1103/PhysRevLett.114.233004
[2] T.V. Raziman, O.J. Martin, Orientation dependence of plasmonically enhanced spontaneous emission, The Journal of Physical Chemistry C 120 (2016) 21037-21046.‏ https://doi.org/10.1021/acs.jpcc.6b03297
[3] A.M. Flatae, F. Tantussi, G.C. Messina, A. Mohammadi, F. Angelis, M. Agio, Plasmonic Gold Nanocones in the Near Infrared for Quantum Nano-Optics, Advanced Optical Materials 5 (2017) 170058.‏
[4] M. Sukharev, N. Freifeld, A. Nitzan, Numerical calculations of radiative and non-radiative relaxation of molecules near metal particles, The Journal of Physical Chemistry C 118 (2014) 10545-10551.‏ https://doi.org/10.1021/jp4104245
 
[5] X.W. Chen, M. Agio, V. Sandoghdar, Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission, Physical review letters 108 (2012) 233001.‏ https://doi.org/10.1103/PhysRevLett.108.233001
[6] M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva, A. Simi, F. De Angelis, 3D plasmonic nanoantennas integrated with MEA biosensors, Nanoscale 7 (2015) 3703-3711.‏
[7] K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors, Chemical Reviews 111 (2011) 3828–3857. https://doi.org/10.1021/cr100313v
[8] H. Ding, L. Lalouat, B. Gonzalez-Acevedo,  R. Orobtchouk., C. Seassal, E. Drouard, Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells, Optics express 24 (2016) A650-A666.‏ https://doi.org/10.1364/OE.24.00A650
[9] L. Zhou, X. Yu, J. Zhu, Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement, Nano letters 14 (2014) 1093-1098.‏ https://doi.org/10.1021/nl500008y
[10] A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Spheroidal nanoparticles as nanoantennas for fluorescence enhancement, International Journal of Nanotechnology. 6 (2009) 902-914. https://doi.org/10.1504/IJNT.2009.027554
[11] A. Mohammadi, V. Sandoghdar, M. Agio, Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission, Journal of Computational and Theoretical Nanoscience 6 (2009) 2024-2030.‏ https://doi.org/10.1166/jctn.2009.1259
[12] L. Novotny, B. Hecht, Principles of nano-optics, Cambridge university press‏ (2006).
 [13] S. D’Agostino, F. Della Sala, L.C. Andreani, Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation, Physical Review B 87 (2013) 205413.‏ https://doi.org/10.1103/PhysRevB.87.205413
[14] A. Bansal, S.S. Verma, Size and surrounding medium effects on plasmonic response of Au-Ag-Cu nanospheres, In Emerging Electronics (ICEE) (2014) 1-4. 10.1109/ICEmElec.2014.7151175
[15] E.M. Purcell, Spontaneous emission probabilities at radio frequency, Physical Review 69 (1946) 681.                 https://doi.org/10.1007/978-1-4615-1963-8_40
[16] A. Mohammadi, V. Sandoghdar, M. Agio, Gold nanorods and nanospheroids for enhancing spontaneous emission, New Journal of Physics 10 (2008) 105015.‏    https://doi.org/10.1088/1367-2630/10/10/105015
[17] A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Fluorescence enhancement with the optical (bi-) conical antenna, The Journal of Physical Chemistry C 114 (2010) 7372-7377. https://doi.org/10.1021/jp9094084
[18] A. Firoozi, A. Mohammadi, M. Agio, Plasmonic Core-Shell Nanocones for Enhancing Spontaneous Emission. The 7th International Conference on Nanostructures (ICNS7) )2018.(
[19] S. Sun, L. Wu, P. Bai, C.E. Png, Fluorescence enhancement in visible light: dielectric or noble metal?, Physical Chemistry Chemical Physics 18 (2016) 19324-19335.‏ 10.1039/c6cp03303b
[20] G. Lu, T. Zhang, W. Li, L. Hou, J. Liu, Q. Gong, Single-molecule spontaneous emission in the vicinity of an individual gold nanorod, The Journal of Physical Chemistry C 115 (2011) 15822-15828.‏ https://doi.org/10.1021/jp203317d
[21] S. D’Agostino, F. Della Sala, L.C. Andreani, Dipole decay rates engineering via silver nanocones, Plasmonics 8 (2013) 1079-1086.‏ https://doi.org/10.1007/s11468-013-9512-3
[22] A. Taflove, S.G. Hagness, Computational electrodynamics: the finite-difference time-domain method, Artech house (2005).‏
[23] C. Hafner, Post-modern electromagnetics. John Wihley & Sons (1999).‏
[24] G. Dhatt, G. Touzot. Finite element method. John Wiley & Sons (2012).‏
[25] U. Hohenester, J. Krenn, Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach, Physical Review B 72 (2005) 195429.‏ https://doi.org/10.1103/PhysRevB.72.195429
[26] P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Physical Review B 6 (1972) 4370-4379. https://doi.org/10.1103/PhysRevB.6.4370
 [27] J.W. Liaw, C.S. Chen, J.H. Chen, Enhancement or quenching effect of metallic nanodimer on spontaneous emission, Journal of Quantitative Spectroscopy and Radiative Transfer 111 (2010) 454-465.‏ https://doi.org/10.1016/j.jqsrt.2009.09.009