[2] T.V. Raziman, O.J. Martin, Orientation dependence of plasmonically enhanced spontaneous emission, The Journal of Physical Chemistry C 120 (2016) 21037-21046. https://doi.org/10.1021/acs.jpcc.6b03297
[3] A.M. Flatae, F. Tantussi, G.C. Messina, A. Mohammadi, F. Angelis, M. Agio, Plasmonic Gold Nanocones in the Near Infrared for Quantum Nano-Optics, Advanced Optical Materials 5 (2017) 170058.
[4] M. Sukharev, N. Freifeld, A. Nitzan, Numerical calculations of radiative and non-radiative relaxation of molecules near metal particles, The Journal of Physical Chemistry C 118 (2014) 10545-10551. https://doi.org/10.1021/jp4104245
[6] M. Dipalo, G.C. Messina, H. Amin, R. La Rocca, V. Shalabaeva, A. Simi, F. De Angelis, 3D plasmonic nanoantennas integrated with MEA biosensors, Nanoscale 7 (2015) 3703-3711.
[7] K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors, Chemical Reviews 111 (2011) 3828–3857. https://doi.org/10.1021/cr100313v
[8] H. Ding, L. Lalouat, B. Gonzalez-Acevedo, R. Orobtchouk., C. Seassal, E. Drouard, Design rules for net absorption enhancement in pseudo-disordered photonic crystal for thin film solar cells, Optics express 24 (2016) A650-A666. https://doi.org/10.1364/OE.24.00A650
[9] L. Zhou, X. Yu, J. Zhu, Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement, Nano letters 14 (2014) 1093-1098. https://doi.org/10.1021/nl500008y
[10] A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Spheroidal nanoparticles as nanoantennas for fluorescence enhancement, International Journal of Nanotechnology. 6 (2009) 902-914. https://doi.org/10.1504/IJNT.2009.027554
[11] A. Mohammadi, V. Sandoghdar, M. Agio, Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission, Journal of Computational and Theoretical Nanoscience 6 (2009) 2024-2030. https://doi.org/10.1166/jctn.2009.1259
[12] L. Novotny, B. Hecht, Principles of nano-optics, Cambridge university press (2006).
[13] S. D’Agostino, F. Della Sala, L.C. Andreani, Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation, Physical Review B 87 (2013) 205413. https://doi.org/10.1103/PhysRevB.87.205413
[14] A. Bansal, S.S. Verma, Size and surrounding medium effects on plasmonic response of Au-Ag-Cu nanospheres, In Emerging Electronics (ICEE) (2014) 1-4. 10.1109/ICEmElec.2014.7151175
[17] A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Fluorescence enhancement with the optical (bi-) conical antenna, The Journal of Physical Chemistry C 114 (2010) 7372-7377. https://doi.org/10.1021/jp9094084
[18] A. Firoozi, A. Mohammadi, M. Agio, Plasmonic Core-Shell Nanocones for Enhancing Spontaneous Emission. The 7th International Conference on Nanostructures (ICNS7) )2018.(
[19] S. Sun, L. Wu, P. Bai, C.E. Png, Fluorescence enhancement in visible light: dielectric or noble metal?, Physical Chemistry Chemical Physics 18 (2016) 19324-19335. 10.1039/c6cp03303b
[20] G. Lu, T. Zhang, W. Li, L. Hou, J. Liu, Q. Gong, Single-molecule spontaneous emission in the vicinity of an individual gold nanorod, The Journal of Physical Chemistry C 115 (2011) 15822-15828. https://doi.org/10.1021/jp203317d
[22] A. Taflove, S.G. Hagness, Computational electrodynamics: the finite-difference time-domain method, Artech house (2005).
[23] C. Hafner, Post-modern electromagnetics. John Wihley & Sons (1999).
[24] G. Dhatt, G. Touzot. Finite element method. John Wiley & Sons (2012).
[25] U. Hohenester, J. Krenn, Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach, Physical Review B 72 (2005) 195429. https://doi.org/10.1103/PhysRevB.72.195429
[27] J.W. Liaw, C.S. Chen, J.H. Chen, Enhancement or quenching effect of metallic nanodimer on spontaneous emission, Journal of Quantitative Spectroscopy and Radiative Transfer 111 (2010) 454-465. https://doi.org/10.1016/j.jqsrt.2009.09.009