Electronic transport properties of doped graphene-like borophene by ab initio calculations

Document Type : Full length research Paper

Authors

1 Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

Abstract

Abstract
In this paper, the electronic transport properties of graphene-like borophene as well as its doped structures with boron, carbon and nitrogen atoms are investigated using the density functional theory. Total and partial density of states, band structure, charge density, quantum conductance and current-voltage characteristic of these structures have been studied and compared. The results indicate that graphene-like borophene is a metal, and has a Dirac point with a linear dispersion relation similar graphene. Our investigations demonstrate that the Dirac point is in upper place than the Fermi level, and the doping can affect the location of Dirac point. Moreover, the current-voltage characteristics show Ohmic behavior of these structures. In doped graphene-like borophene structures, boron atoms are formed ionic bonds. In all considered structures, the current density along zigzag and armchair directions exhibit an anisotropic behavior. By 90° rotation of graphene-like borophene sheet with carbon atom, its current is controlled and this material can be used to design nanoelectronic switches. The current control with C atom doping can be used in this two-dimensional material to design nanoelectronic switches.

Keywords

Main Subjects


[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306 (2004) 666-669.                 10.1126/science.1102896
 
[2] X. Hu, J. Zheng, Z. Ren,
Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Frontiers in Physics 13 (2017) 137302. https://doi.org/10.1007/s11467-017-0736-0
 
[3] G. Liu, S. Liu, B. Xu, C. Ouyang, H. Song, S. Guan, and S. Yang, Multiple Dirac Points and Hydrogenation-Induced Magnetism of Germanene Layer on Al (111) Surface, Journal of Physical Chemistry Letters 6 (2015). https://doi.org/10.1021/acs.jpclett.5b02413
 
[4] G. Liu, X. Lei, M. Wu, B. Xu, C. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: a first principles investigation, Journal of Physics: Condensed Matter 26 (2014) 355007. DOI:10.1088/0953-8984/26/35/355007
 
[5] J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, G. Lay, "Large area planar stanene epitaxially grown on Ag(1 1 1)"2D Materials. 2 (2018) 025002. 
 
[6] A.J. Mannix, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350 (2015) 1513. DOI: 10.1126/science.aad1080
 
[7] L. Kong, K. Wu, L. Chen, Recent progress on borophene: Growth and structures, Frontiers in Physics 13 3 (2018) 138105. https://doi.org/10.1007/s11467-018-0752-8
 
[8] Z. Wang, T. Lü, H. Wang, et al., Frontiers in Physics 14 (2019) 33403.                                                                   https://doi.org/10.1007/s11467-019-0884-5
 
[9] V. Wang, W. Geng, Lattice defects and the mechanical anisotropy of borophene,  Journal of Physical Chemistry C 121 18 (2017) 10224. https://doi.org/10.1021/acs.jpcc.7b02582
 
[10] H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He & J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Scientific Reports volume 7 (2017) 45986. https://doi.org/10.1038/srep45986
 
[11] E.S. Penev, A. Kutana, B.I. Yakobson, Can two dimensional boron superconduct? Nano Letters 16 4 (2016) 2522-2526. https://doi.org/10.1021/acs.nanolett.6b00070
 
[12] H. Wang, Q. Li, Y. Gao, F. Miao, X. Zhou, X. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New Journal of Physics 18 7 (2016) 073016.
 
[13] W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene, Science Bulletin 63 (2018) 282-286.
 
[14] M. Shahrokhi, Can fluorine, chlorine functionalization stabilize the graphene like borophene?, Computational Materials Science 156 (2019) 56-66. DOI:10.1016/j.commatsci.2018.09.045
 
[15] H. Yuan, C. Na, C. Chao, X. ShiYun & Z. JianWei, Tuning the electronic transport anisotropy in borophene via oxidation strategy, SCIENCE CHINA Technological Sciences 62 (2019) 799-810. https://doi.org/10.1007/s11431-018-9385-x
 
[16] M. Pashangpour, Electronic transport properties of partially hydrogenated and fluorinated borophene, a DFT study, Computational Materials Science 168 (2019) 74-80. DOI: 10.1016/j.commatsci.2019.05.052
 
[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al. , Journal of Physics: Condensed Matter 21 (2009) 395502.
 
[18] A. Ferretti, B. Bonferroni, A. Calzolari, M. Buongiorno Nardelli, http://www.wannier-transport.org.
 
[19] C. Lee, B. Feng, M. D’angelo, R. Yukawa, R. Liu, T. Kondo, H. Kumigashira, I. Matsuda, and T. Ozaki, Peculiar bonding associated with atomic doping and hidden honeycombs in borophene, Physical Review B 97 (2018) 075430. DOI: 10.1103/PhysRevB.97.075430
 
[20] H. Monkhorst, J. Pack: Special points for Brillouin-zone integrations. Physical Review B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
 
[21] R. Alizadeh Vajary, S. Izadi Vishkayi, M. Bagheri Tagani, Study of the Influence of Structural Defects on Mechanical and Electrical Properties of β12 Borophene, Journal of Research on Many-body Systems 9 3 (2019) 40-48.
doi:10.22055/jrmbs.2019.14904
 
[22] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge university press, (1997).
 
[23] V. Shukla, A. Grigoriev, N. Jena, R. Ahuja, Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets, Physical Chemistry Chemical Physics.20 (2018) 22952. https://doi.org/10.1103/PhysRevB.13.5188