Vacuum squeezing simulation in two photon lossy cavity

Document Type : Full length research Paper

Author

Department of Physics, Faculty of Science, University of Hormozgan, Bandar-e-Abbas, Iran

Abstract

In this research, squeeze vacuum state of quantum light is simulated. For this purpose, single mode dissipative cavity with non-zero second-order susceptibility is used. Cavity nonlinear medium is driving by laser pump with known frequency, and pairs of identical photons are created, with one-half frequency of driving pump. This process known as degenerate parametric down conversion. In the absence of any dissipation, simulation shows linear time dependent squeezing parameter, which is in agreement with theoretical results. In two photon loss of cavity in contact with cold reservoir, competition between gain and two photon loss, results in stable squeezing of initial vacuum, in steady state of system.

Keywords

Main Subjects


 
[1]        K. Vogel, V. Akulin, W. Schleich Quantum state engineering of the radiation field Physical Review Letters 71 (1993) 1816 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.1816
[2]        V. Dodonov Nonclassical states in quantum optics: a squeezed review of the first 75 years Journal of Optics B: Quantum and Semiclassical Optics 4 (2002) R1 http://iopscience.iop.org/article/10.1088/1464-4266/4/1/201/pdf
[3]        V.V. Dodonov, V.I. Man'ko Theory of nonclassical states of light CRC Press (2003) https://doi.org/10.1201/9781482288223
[4]        D.F. Walls Growing expectations from squeezed states of light Nature 324 (1986) 210 https://www.nature.com/articles/324210a0
[5]        L.-A. Wu, M. Xiao and H. Kimble Squeezed states of light from an optical parametric oscillator Joumal of the Optical Society of America A 4 (1987) 1465-75 https://doi.org/10.1364/JOSAB.4.001465
[6]        D.F. Walls Squeezed states of light Nature 306 (1983) 141 https://www.nature.com/articles/306141a0
[7]        R. Schnabel Squeezed states of light and their applications in laser interferometers Physics Reports 684 (2017) 1-51 https://doi.org/10.1016/j.physrep.2017.04.001
[8]        L.-A. Wu, H. Kimble, J. Hall, H. Wu Generation of squeezed states by parametric down conversion Physical Review Letters 57 2520 (1986) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.57.2520
[9]        R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley Observation of squeezed states generated by four-wave mixing in an optical cavity Physical Review Letters 55 (1985) 2409 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.55.2409
[10]      U.L. Andersen, T. Gehring, C. Marquardt, G.J.P.S. Leuchs 30 years of squeezed light generation 91 (2016) 053001 http://iopscience.iop.org/article/10.1088/0031-8949/91/5/053001/pdf
[11]      H. Vahlbruch, M. Mehmet, K. Danzmann and R. Schnabel Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency Physical Review Letters 117 (2016) 110801 https://doi.org/10.1103/PhysRevLett.117.110801
[12]      M. Mehmet, H.J.C. Vahlbruch and Q. Gravity High-efficiency squeezed light generation for gravitational wave detectors 36 (2018) 015014 https://iopscience.iop.org/article/10.1088/1361-6382/aaf448/meta
[13]      M. Mehmet, H.J.G. Vahlbruch The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3 8 (2020) 79 https://doi.org/10.3390/galaxies8040079
[14]      A. Perreca, A.F. Brooks, J.W. Richardson, D. Töyrä, R.J.P.R.D. Smith Analysis and visualization of the output mode-matching requirements for squeezing in Advanced LIGO and future gravitational wave detectors 101 (2020) 102005 https://doi.org/10.1103/PhysRevD.101.102005
[15]      T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection Physical Review Letters 104 (2010) 251102 https://link.aps.org/doi/10.1103/PhysRevLett.104.251102
[16]      J. Lough, E. Schreiber, F. Bergamin, H. Grote, M. Mehmet, H. Vahlbruch, C. Affeldt, M. Brinkmann, A. Bisht, V. Kringel, H. Lück, N. Mukund, S. Nadji, B. Sorazu, K. Strain, M. Weinert, K. Danzmann First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory Physical Review Letters 126 (2021) 041102 https://link.aps.org/doi/10.1103/PhysRevLett.126.041102
[17]      C.M. Caves Quantum-mechanical noise in an interferometer Physical Review D 23 (1981) 1693 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.23.1693
[18]      Y.V. Sidorov Quantum State of Gravitons in Expanding Universe Europhysics Letters (EPL) 10 (1989) 415-8 http://dx.doi.org/10.1209/0295-5075/10/5/005
[19]      H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutsky and H. Vahlbruch First long-term application of squeezed states of light in a gravitational-wave observatory Physical Review Letters 110 (2013) 181101 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.181101
[20] B.A. Bambah, M.V. Satyanarayana Squeezed coherent states and hadronic multiplicity distributions Progress of Theoretical Physics Supplement 86 (1986) 377-82 https://doi.org/10.1143/PTPS.86.377
[21]      N.B. An Exciton-induced squeezed state of light in semiconductors Physical Review B 48 (1993) 11732 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.11732
[22]      J.R. Johansson, P.D. Nation, F.J.C. P.C. Nori QuTiP: An open-source Python framework for the dynamics of open quantum systems 183 1760-72 (2012) https://doi.org/10.1016/j.cpc.2012.02.021
[23]      C. Gerry, P.L. Knight Introductory quantum optics Cambridge university press (2005) https://doi.org/10.1017/CBO9780511791239
[24]      H.-P. Breuer and F. Petruccione The theory of open quantum systems Oxford University Press on Demand (2002) https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199213900.001.0001/acprof-9780199213900
[25]      P.D. Drummond, Z. Ficek Quantum squeezing Springer Science & Business Media (2013) https://link.springer.com/book/10.1007/978-3-662-09645-1
[26]      L. Mandel Sub-Poissonian photon statistics in resonance fluorescence Optics Letters 4 (1979) 205-7 https://www.osapublishing.org/ol/abstract.cfm?uri=ol-4-7-205
[27]      Y. Zhao, Y. Okawachi, J.K. Jang, X. Ji, M. Lipson, A.L. Gaeta Near-Degenerate Quadrature-Squeezed Vacuum Generation on a Silicon-Nitride Chip Physical Review Letters 124 (2020) 193601 https://link.aps.org/doi/10.1103/PhysRevLett.124.193601