In this research, we have considered quantum phase transition for even-even neodymium isotopes ( ) using the Hamiltonian of Interacting Boson Model (IBM-1) in the framework of affine SU(1,1) Lie algebra. The energy spectrum of this chain has obtained by calculating the Hamiltonian control parameters with Least Squares method. In the following, energy surfaces using coherent state formalism has calculated. Changes observed in the energy surfaces and the values of showed that the isotope is the transitional nuclei between U(5) and SO(6) limits. The results of this model are in good agreement with New Empirical Formula (NEF).
[6] H. Sabri, M. Seidi, Energy spectra and E2 transition rates of 124-130 Ba, International Journal of Modern Physics E, 25 (2016) 1650086.https://doi.org/10.1142/S0218301316500865
[7] M. Macek, P. Stránský, A. Leviatan, P. Cejnar, Excited-state quantum phase transitions in systems with two degrees of freedom. III. Interacting boson systems, Physical Review C99 (2019) 064323. https://doi.org/10.1103/PhysRevC.99.064323
[8] K. Nomura, Y. Zhang, Two-neutron transfer reactions and shape phase transitions in the microscopically formulated interacting boson model, Physical Review C, 99 (2019) 024324. https://doi.org/10.1103/PhysRevC.99.024324
[9] Yu Zhang, Yan Zuo, Feng Pan, J.P. Draayer, Excited-state quantum phase transitions in the interacting boson model: Spectral characteristics of 0+ states and effective order parameter, Physical Review C93 (2016) 044302. https://doi.org/10.1103/PhysRevC.93.044302
[10] Y. Zhang, F. Iachello, Two-nucleon transfer reactions as a test of quantum phase transitions in nuclei, Physical Review C95 (2017) 034306. https://doi.org/10.1103/PhysRevC.95.034306
[11] K. Nomura et al, Shape coexistence in the microscopically guided interacting boson model, Journal of Physics G: Nuclear and Particle Physics, 43 (2016) 024008. https://doi.org/10.1088/0954-3899/43/2/024008
[12] L. Fortunato, C.E. Alonso, J.M. Arias, J.E. Garcıa-Ramos, A. Vitturi, Phase diagram for a cubic-Q interacting boson model Hamiltonian: Signs of triaxiality, Physical Review C84 (2011) 014326.
[13] Yu Zhang, Feng Pan, Yu-Xin Liu, Yan-An Luo, J. P. Draayer, Analytically solvable prolate-oblate shape phase transitional description within the SU(3) limit of the interacting boson model, Physical Review C,85 (2012) 064312. https://doi.org/10.1103/PhysRevC.85.064312
[14] H. Fathi, M. Ghadami, H. Sabri, N. Fouladi, M. A. Jafarizadeh, Investigation of shape phase transition in the U(5) ↔ SO(6) transitional region by catastrophe theory and critical exponents of some quantities, International Journal of ModernPhysics E, 23 (2014) 1450045. https://doi.org/10.1142/S0218301314500451
[19] T.R. Rodriguez, J. Luis Egido, A beyond mean field analysis of the shape transition in the Neodymium isotopes, Physical Letter B, 663 (2008) 49. https://doi.org/10.1016/j.physletb.2008.03.061
nazari, L., seidi, M., & Mohammadi sabet, M. (2021). Quantum phase transition of the neodymium isotope chain using the su(1,1) Affine Lie algebra in the framework of IBM-1. Journal of Research on Many-body Systems, 11(1), 68-78. doi: 10.22055/jrmbs.2021.16787
MLA
leila nazari; masoud seidi; Mohammad Mohammadi sabet. "Quantum phase transition of the neodymium isotope chain using the su(1,1) Affine Lie algebra in the framework of IBM-1". Journal of Research on Many-body Systems, 11, 1, 2021, 68-78. doi: 10.22055/jrmbs.2021.16787
HARVARD
nazari, L., seidi, M., Mohammadi sabet, M. (2021). 'Quantum phase transition of the neodymium isotope chain using the su(1,1) Affine Lie algebra in the framework of IBM-1', Journal of Research on Many-body Systems, 11(1), pp. 68-78. doi: 10.22055/jrmbs.2021.16787
VANCOUVER
nazari, L., seidi, M., Mohammadi sabet, M. Quantum phase transition of the neodymium isotope chain using the su(1,1) Affine Lie algebra in the framework of IBM-1. Journal of Research on Many-body Systems, 2021; 11(1): 68-78. doi: 10.22055/jrmbs.2021.16787