بررسی اثر شدت و جهت میدان مغناطیسی در انتقال حرارت سامانه‌های نوری مغناطیسی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم، دانشگاه زنجان، زنجان، ایران

چکیده

در این مقاله به بررسی انتقال حرارت در سامانه ای چند ذره ای متشکل از مواد نوری‌مغناطیسی میپردازیم. در این دسته از مواد تشدید مدهای سطحی در حضور میدان مغناطیسی خارجی باعث شکست تقارن در سامانه و از بین رفتن همسانگردی پاسخ اپتیکی این نانو ذرات می‌شود. با استفاده از معادلات حاکم بر انتقال حرارت در سامانه های بس ذره ای، اثر جهت گیری نسبی و اندازه میدان خارجی بر دمای تعادلی سامانه هایی از نانوذرات نوری مغناطیسی مورد بررسی قرار گرفته است. علاوه بر این با تغییر اندازه ذرات و شکستن تقارن در سامانه ای سه ذره ای به مقایسه سامانه متقارن با نامتقارن پرداخته ایم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of magnetic field on the radiative heat transfer in system of magneto-optical nanoparticles

نویسندگان [English]

  • Moladad Nikbakht
  • Mojde Rezaee
  • Neda Zolghadri
  • Alireza Naeimi
Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran
چکیده [English]

We investigate the radiative heat transfer in systems of magneto-optical nanoparticles. The resonance of surface modes due to an external magnetic field results in an anisotropic optical response of these nanoparticles. Using the many-body radiative heat transfer theory, we have investigated the influence of the magnitude and the direction of an external magnetic field on the steady state temperature of system of magneto-optical nanoparticles. Moreover, the influence of configuration symmetry breaking (with change of nanoparticles size) on the net heat exchange and temperatures are investigated in a three body system and the results are compared to that of symmetrical system.

کلیدواژه‌ها [English]

  • Radiative heat transfer
  • Magneto‐optical Materials
  • Magnetic field
[1] J.B. Pendry, Radiative exchange of heat between nanostructures, Journal of Physics: Condensed Matter, 11 (199) 6621–6. https://doi.org/10.1088/0953-8984/11/35/301
[2] D.V. Polder, M. Van Hove, Theory of radiative heat transfer between closely spaced bodies, Physical Review B 4 (1971) 3303. https://doi.org/10.1103/PhysRevB.4.3303
[3] S. Basu, Z.M. Zhang, C.J. Fu, Review of near field thermal radiation and its application to energy conversion, International Journal of Energy Research33 (2009) 1203-1232. https://doi.org/10.1002/er.1607
[4] A. Kittel, W. Müller-Hirsch, J. Parisi, S.A. Biehs, D. Reddig, M. Holthaus, Near-field heat transfer in a scanning thermal microscope, Physical review letters95 (2005), 224301. https://doi.org/10.1103/PhysRevLett.95.224301   
[5] V. Kubytskyi, S.A. Biehs, P. Ben-Abdallah. Radiative bistability and thermal memory, Physical review letters 113 (2014) 074301.‏ https://doi.org/10.1103/PhysRevLett.113.074301
[6] P. Ben-Abdallah, S.A. Biehs. Near-field thermal transistor, Physical review letters 112 (2014) 044301.‏ https://doi.org/10.1103/PhysRevLett.112.044301
[7] P. Ben-Abdallah, Photon thermal hall effect, Physical review letters 116 (2016) 084301. https://doi.org/10.1103/PhysRevLett.116.084301
 
[8] I. Latella, P. Ben-Abdallah. Giant thermal magnetoresistance in plasmonic structures, Physical review letters, 118 (2017) 173902. https://doi.org/10.1103/PhysRevLett.118.173902
[9] A. Ott. Radiative thermal diode driven by nonreciprocal surface waves, Applied Physics Letters, 114 (2019) 163105. https://doi.org/10.1063/1.5093626
[10] M. Nikbakht. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement, Journal of Applied Physics, 116 (2014) 094307. https://doi.org/10.1063/1.4894622
[11] A. Narayanaswamy, S. Shen, G. Chen, Near-field radiative heat transfer between a sphere and a substrate, Physical Review B 78 (2008) 115303. https://doi.org/10.1103/PhysRevB.78.115303  
[12] S. Basu, M. Francoeur, Near-field radiative transfer based thermal rectification using doped silicon, Applied Physics Letters 98 (2011) 113106. https://aip.scitation.org/doi/10.1063/1.3567026
[13] H. Iizuka, S.H. Fan, Rectification of evanescent heat transfer between dielectric-coated and uncoated silicon carbide plates, Journal of Applied Physics 112 (2012) 024304.     https://doi.org/10.1063/1.4737465
[14] R. Messina. Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles, Physical Review. B. 88 (2013): 104307. https://doi.org/10.1103/PhysRevB.88.104307
 [15] S. Pakdel, M. Miri. Faraday rotation and circular dichroism spectra of gold and silver nanoparticle aggregates, Physical Review B 86 (2012): 235445. https://doi.org/10.1103/PhysRevB.86.235445
[16] F. Khoeini, L. Esmaeili, Effects of electric and magnetic fields on electronic properties of stanene nanoribbons, Journal of Research on many-body systems 9 2 (2019) 61-69.         https://jrmbs.scu.ac.ir/article_14835.html
[17] A. Ott, R. Messina, P. Ben-Abdallah, S. A. Biehs, Magnetothermoplasmonics: from theory to applications, Journal of Photonics for Energy 9 (2019) 032711. http://dx.doi.org/10.1117/1.JPE.9.032711