[2] O. Pfister, Continuous-variable quantum computing in the quantum optical frequency comb, Journal of Physics B: Atomic, Molecular and Optical Physics 53 (2019) 012001. https://doi.org/10.1088/1361-6455/ab526f
[5] N.C. Menicucci, S.T. Flammia,O. Pfister, One-Way Quantum Computing in the Optical Frequency Comb, Physical Review Letters 101 (2008) 130501. https://doi.org/10.1103/PhysRevLett.101.130501
[6] J. Roslund, R.M.D. Araujo, S. Jiang, C. Fabre, N. Treps, Wavelength-Multiplexed Quantum Networks with Ultrafast Frequency Combs, Nature Photonic 8 (2014) 109. https://doi.org/10.1038/nphoton.2013.340
[7] M. Chen, N.C. Menicucci, O. Pfister, Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb, Physical Review Letters 112, (2014) 120505. https://doi.org/10.1103/PhysRevLett.112.120505
[8] S.L. Braunstein, H.J. Kimble, Teleportation of Continuous Quantum Variables, Physical Review Letters 80 (1998) 869. https://doi.org/10.1103/PhysRevLett.80.869
[9] T. Opatrny, G. Kurizki, Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions, Physical Review Letters 86 (2001) 3180. https://doi.org/10.1103/PhysRevLett.86.3180
[14] M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, The Einstein-Podolsky-Rosen paradox: From concepts to applications, Reviews of Modern Physics 81 (2009) 1727. https://doi.org/10.1103/RevModPhys.81.1727
[15] L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability Criterion for Continuous Variable Systems, Physical Review Letters 84 (2000) 2722. https://doi.org/10.1103/PhysRevLett.84.2722
[16] D. Bossini, S.D. Conte, G. Cerullo, O. Gomonay, R. V. Pisarev, M. Borovsak, D. Mihailovic, J. Sinova, J. H. Mentink, T. Rasing و A. V. Kimel, Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets Physical Review B 100, (2019) 024428. https://doi.org/10.1103/PhysRevB.100.024428
[17] H. Y. Yuan, S. Zheng, Z. Ficek, Q. Y. He , M.-H. Yung, Enhancement of magnon-magnon entanglement inside a cavity, Physical Review B 101 (2020) 014419. https://doi.org/10.1103/PhysRevB.101.014419
[18] J. Li, S.-Y. Zhu, Entangling two magnon modes via magnetostrictive interaction, New Journal of Physics 21 (2019) 085001. https://doi.org/10.1088/1367-2630/ab3508
[19] V. Azimi-Mousolou, A. Bagrov, A. Bergman, A. Delin, O. Eriksson, Y. Liu, M. Pereiro, D. Thonig و E. Sjöqvist, Hierarchy of magnon entanglement in antiferromagnets, Physical Review B 102 (2020) 224418. https://doi.org/10.1103/PhysRevB.102.22441
[20] J. Li, S.-Y. Zhu, G. S. Agarwal, Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics, Physical Review Letters 121 (2018) 203601. https://doi.org/10.1103/PhysRevLett.121.2036
[21] H. Tan, Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system, Physical Review Research 1 (2019) 033161. https://doi.org/10.1103/PhysRevResearch.1.033161
[22] Q. Cai, J. Liao و Q. Zhou, Stationary entanglement between light and microwave via ferromagnetic magnons, Annals of Physics (Berlin) (2020) 2000250.
https://doi.org/10.1002/andp.202000250
[23] P. Mohn, Magnetism in the Solid State: an Introduction, Berlin: Springer-Verlag, 2006.
[24] P. Zanardi, D. A. Lidar و S. Lloyd, Quantum Tensor Product Structures are Observable Induced, Physical Review Letters 92 (2004) 060402. https://doi.org/10.1103/PhysRevLett.92.060402
[25] C. Weedbrook, S. Pirandola, R. G.-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd, Gaussian quantum information, Reviews of Modern Physics 84 (2012) 621. https://doi.org/10.1103/RevModPhys.84.621
[26] J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, C. Klempt, Satisfying the Einstein-Podolsky-Rosen criterion with massive particles, Nature communications 6 (2015) 8984. https://doi.org/10.1038/ncomms9984
[27] J. Li, Y. Liu, N. Huo, L. Cui, S. Feng, X. Li, Z. Y. Ou, Measuring continuous-variable quantum entanglement with parametric-amplifier-assisted homodyne detection, Physical Review A 101 (2020) 053801. https://doi.org/10.1103/PhysRevA.101.053801