Anisotropy effect on magnon entanglement in antiferromagnets

Document Type : Full length research Paper

Author

1 Faculty member, Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran

2 2School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran

3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

Abstract

Entanglement is one of the fundamental quantum concepts that not only distinguishes quantum mechanics from its classical counterpart but also plays important roles in quantum communication and information processing technologies. Here, we aim to study anisotropy contributions of continuous variable entanglement between magnon modes in antiferromagnets. By introducing different bosonic modes, it is shown that the magnetic uniaxial anisotropy induces different entanglement contributions in the ground state of the system. While some of these contributions appear to be decreasing with respect to anisotropy, the other contributions are increasing as functions of anisotropy. It is also shown that the maximum magnon entanglement is always at the centre of Brillouin zone. The analysis presented here is independent of geometric lattice structure and appropriate for many classes of compounds.

Keywords

Main Subjects


[1] S. Lloyd, S.L. Braunstein, Quantum Computation over Continuous Variables, Physical Review Letters 82 (1999) 1784. https://doi.org/10.1103/PhysRevLett.82.1784
[2] O. Pfister, Continuous-variable quantum computing in the quantum optical frequency comb, Journal of Physics B: Atomic, Molecular and Optical Physics 53 (2019) 012001. https://doi.org/10.1088/1361-6455/ab526f
[3] C. Weedbrook, S. Pirandola, R.G.-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information, Reviews of Modern Physics 84 (2012) 621. https://doi.org/10.1103/RevModPhys.84.621
[4] S.L. Braunstein, P. van Loock, Quantum information with continuous variables, Reviews of Modern Physics 77 (2005) 513. https://doi.org/10.1103/RevModPhys.77.513
[5] N.C. Menicucci, S.T. Flammia,O. Pfister, One-Way Quantum Computing in the Optical Frequency Comb, Physical Review Letters 101 (2008) 130501. https://doi.org/10.1103/PhysRevLett.101.130501
[6] J. Roslund, R.M.D. Araujo, S. Jiang, C. Fabre, N. Treps, Wavelength-Multiplexed Quantum Networks with Ultrafast Frequency Combs,  Nature Photonic 8 (2014) 109. https://doi.org/10.1038/nphoton.2013.340
[7] M. Chen, N.C. Menicucci, O. Pfister, Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb,  Physical Review Letters 112, (2014) 120505. https://doi.org/10.1103/PhysRevLett.112.120505
[8] S.L. Braunstein, H.J. Kimble, Teleportation of Continuous Quantum Variables, Physical Review Letters 80 (1998) 869. https://doi.org/10.1103/PhysRevLett.80.869
[9] T. Opatrny, G. Kurizki, Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions, Physical Review Letters 86 (2001) 3180. https://doi.org/10.1103/PhysRevLett.86.3180
[10] K. Hammerer, A.S. Sørensen, E.S. Polzik, Quantum interface between light and atomic ensembles,  Reviews of Modern Physics 82 (2010) 1041. https://doi.org/10.1103/RevModPhys.82.1041
[11] V. Giovannetti, S. Lloyd, L. Maccone, Quantum enhanced measurements: beating the standard quantum limit, Science 306 (2004) 1330. https://doi.org/10.1126/science.1104149
[12] Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Realization of the Einstein-Podolsky-Rosen paradox for continuous variables, Physical Review Letters 68, (1992) 3663. https://doi.org/10.1103/PhysRevLett.68.3663
[13] G. Giedke, M.M. Wolf, O. Kruger, R. F. Werner, J.I. Cirac, Entanglement of Formation for Symmetric Gaussian States, Physical Review Letters 91 (2003) 107901. https://doi.org/10.1103/PhysRevLett.91.107901
[14] M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, The Einstein-Podolsky-Rosen paradox: From concepts to applications, Reviews of Modern Physics 81 (2009) 1727. https://doi.org/10.1103/RevModPhys.81.1727
[15] L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability Criterion for Continuous Variable Systems, Physical Review Letters 84 (2000) 2722. https://doi.org/10.1103/PhysRevLett.84.2722
[16] D. Bossini, S.D. Conte, G. Cerullo, O. Gomonay, R. V. Pisarev, M. Borovsak, D. Mihailovic, J. Sinova, J. H. Mentink, T. Rasing و A. V. Kimel, Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets Physical Review B 100, (2019) 024428. https://doi.org/10.1103/PhysRevB.100.024428
[17] H. Y. Yuan, S. Zheng, Z. Ficek, Q. Y. He , M.-H. Yung, Enhancement of magnon-magnon entanglement inside a cavity, Physical Review B 101 (2020) 014419. https://doi.org/10.1103/PhysRevB.101.014419
[18] J. Li, S.-Y. Zhu, Entangling two magnon modes via magnetostrictive interaction,  New Journal of Physics 21 (2019) 085001. https://doi.org/10.1088/1367-2630/ab3508
[19] V. Azimi-Mousolou, A. Bagrov, A. Bergman, A. Delin, O. Eriksson, Y. Liu, M. Pereiro, D. Thonig و E. Sjöqvist, Hierarchy of magnon entanglement in antiferromagnets, Physical Review B 102 (2020) 224418. https://doi.org/10.1103/PhysRevB.102.22441
[20] J. Li, S.-Y. Zhu, G. S. Agarwal, Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics, Physical Review Letters 121 (2018) 203601. https://doi.org/10.1103/PhysRevLett.121.2036
[21] H. Tan, Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system, Physical Review Research 1 (2019) 033161. https://doi.org/10.1103/PhysRevResearch.1.033161
[22] Q. Cai, J. Liao و Q. Zhou, Stationary entanglement between light and microwave via ferromagnetic magnons, Annals of Physics (Berlin) (2020) 2000250.
https://doi.org/10.1002/andp.202000250
[23] P. Mohn, Magnetism in the Solid State: an Introduction, Berlin: Springer-Verlag, 2006.
[24] P. Zanardi, D. A. Lidar و S. Lloyd, Quantum Tensor Product Structures are Observable Induced, Physical Review Letters 92 (2004) 060402. https://doi.org/10.1103/PhysRevLett.92.060402
[25] C. Weedbrook, S. Pirandola, R. G.-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd, Gaussian quantum information, Reviews of Modern Physics 84 (2012) 621. https://doi.org/10.1103/RevModPhys.84.621
[26] J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, C. Klempt, Satisfying the Einstein-Podolsky-Rosen criterion with massive particles, Nature communications 6 (2015) 8984. https://doi.org/10.1038/ncomms9984
[27] J. Li, Y. Liu, N. Huo, L. Cui, S. Feng, X. Li, Z. Y. Ou, Measuring continuous-variable quantum entanglement with parametric-amplifier-assisted homodyne detection, Physical Review A 101 (2020) 053801. https://doi.org/10.1103/PhysRevA.101.053801