In this paper, the hydromagnetic waves are studied in a degenerate complex magnetoplasma environment taking into account the quantum forces related to the electron spin and the quantum potentials of the ions and electrons. To this end, a modified quantum fluid formalism including the quantum density fluctuations and spin magnetization energy is employed to analyze the dispersive properties of the wave modes. The results show that the presence of dust particles as well as quantum corrections significantly alter the behavior of the waves. In other words, the dispersion of waves decreases with the mass of dust particles. Also, the corrections due to the density fluctuations of ions and electrons have significant effects and introduce non-linear terms in the dispersion relation. In addition, the effect of the electron spin reduces the contribution of other quantum potentials on the dispersion of wave modes. Finally, some special limiting cases are discussed.
[7] P.K. Shukla, Shielding of a slowly moving test charge in dusty plasmas. Physics of plasmas, 1 (1994) 1362. https://doi.org/10.1063/1.870736
[8] S. Ghosh, G.R. Sharma, P. Khare, M. Salimullah, Modified interactions of longitudinal phonon–plasmon in magnetized piezoelectric semiconductor plasmas. Physica B: Condensed Matter,351(2004) 163-170.https://doi.org/10.1016/j.physb.2004.06.001 [9] N.N. Rao, Hydromagnetic waves and shocks in magnetized dusty plasmas. Planetary and space science, 41 (1993) 21. https://doi.org/10.1016/0032-0633(93)90013-R
[16] M. Shahmansoori, Effect of exchange potential on the electrostatic waves in quantum semiconductor plasmas, Journal of research on many-body systems 13 (2017) 95-103. 10.22055/JRMBS.2017.20502.1258
[17] Y.D. Jung, Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas. Physics of Plasmas, 8 (2001) 3842.https://doi.org/10.1063/1.1386430
[18] F.A. Asenjo, The quantum effects of the spin and the Bohm potential in the oblique propagation of magnetosonic waves. Physics letters A, 376 (2012) 2496-2500.http://dx.doi.org/10.1016/j.physleta.2012.06.023
[19] D. Kremp, Th. Bornath, M. Bonitz, M. Schlanges Quantum kinetic theory of plasmas in strong laser fields. Physical Review E,60 (1999) 4725.https://doi.org/10.1103/PhysRevE.60.4725
[20] S. Ali, P.K. Shukla, Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas. Physics of plasmas. 13 (2006) 052113.https://doi.org/10.1063/1.2201535
[23] P.K. Shukla, Compressional magnetoacoustic waves in a quantum dusty mgnetoplasma. Journal of Plasma Physics, 74 (2008) 107.https://doi.org/10.1017/S0022377807006642
[24] H. Lotfi, A. Mehramiz, Effect of quantum forces on electromagnetic ion waves in a spin quantum plasma, Journal of research on many-body systems, 8(2017) 115-122. 10.22055/JRMBS.2018.13643
[25] A. Mehramiz, E. Sh. Soleimani, Dispersion of magneto-acoustic waves in a quantum plasma, Iranian Journal of Physics Research,18, (2018) 229-234. https://dx.doi.org/10.29252/ijpr.18.2.229
[26] N.N. Rao, Low-frequency waves in magnetized dusty plasmas. Journal of plasma physics49 (1993) 375-393. https://doi.org/10.1017/S002237780001707
[27] F.F. Chen, Introduction to plasma Physics and controlled fusion, Springer, Switzerland, (2016). https://iopscience.iop.org/journal/0741-333
mehramiz, A., Lotfi, H., & Mohammadhoseini, B. (2021). Quantum hydromagnetic waves in a spin complex plasma. Journal of Research on Many-body Systems, 11(1), 128-138. doi: 10.22055/jrmbs.2021.16811
MLA
ahmad mehramiz; Hossein Lotfi; Babak Mohammadhoseini. "Quantum hydromagnetic waves in a spin complex plasma". Journal of Research on Many-body Systems, 11, 1, 2021, 128-138. doi: 10.22055/jrmbs.2021.16811
HARVARD
mehramiz, A., Lotfi, H., Mohammadhoseini, B. (2021). 'Quantum hydromagnetic waves in a spin complex plasma', Journal of Research on Many-body Systems, 11(1), pp. 128-138. doi: 10.22055/jrmbs.2021.16811
VANCOUVER
mehramiz, A., Lotfi, H., Mohammadhoseini, B. Quantum hydromagnetic waves in a spin complex plasma. Journal of Research on Many-body Systems, 2021; 11(1): 128-138. doi: 10.22055/jrmbs.2021.16811