[1] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nature Materials 2 (2003) 229-232. https://doi.org/10.1038/nmat852
[2] M. Quinten, A. Lietner, J.R. Krenn, F.R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters 23 (1998) 1331. https://doi.org/10.1364/OL.23.001331
[3] J.R. Krenn et. al., Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles, Physical Review B 82 (1999) 2590. https://doi.org/10.1103/PhysRevLett.82.2590
[4] J. Muller et. al., Electrically controlled light scattering with single metal nanoparticles, Applied Physics Letters 81 (2002) 171. https://doi.org/10.1063/1.1491003
[5] T. Zentgraf, A. Christ, J. Kuhl, H. Giessen, Tailoring the Ultrafast Dephasing of Quasiparticles in Metallic Photonic Crystals, Physical Review Letters 93 (2004) 243901. https://doi.org/10.1103/PhysRevLett.93.243901
[6] M.L. Brongersma, J.W. Hartman, H.A. Atwater, Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Physical Review B 62 (2000) R16356. https://doi.org/10.1103/PhysRevB.62.R16356
[7] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, Journal of Physical Chemistry B 107 (2003) 668-677. https://doi.org/10.1021/jp026731y
[8] K. Li, M.I. Stockman, D. Bergman, Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens, Physical Review Letters 91 (2003) 227402. https://doi.org/10.1103/PhysRevLett.91.227402
[9] S.Y. Park, D. Stroud, Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation, Physical Review B 69 (2004) 125418. https://doi.org/10.1103/PhysRevB.69.125418
[10] D.S. Citrin, Plasmon Polaritons in Finite-Length Metal−Nanoparticle Chains: The Role of Chain Length Unravelled, Nano Letters 5 (2005) 985. https://doi.org/10.1021/nl050513+
[12] G.C. des Francs, C. Girard, O.J.F. Martin, Fluorescence resonant energy transfer in the optical near field, Physical Review Letters 67 (2003) 053805. https://doi.org/10.1103/PhysRevA.67.053805
[15] C.K. Chen, T.F. Heinz, D. Ricard, Y.R. Shen, Surface-enhanced second-harmonic generation and Raman scattering, Physical Review B 27 (1983) 1965–1979. https://doi.org/10.1103/PhysRevB.27.1965
[16] G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Physical Review B Condens. Matter 33 (1986) 7923–7936. https://doi.org/10.1103/PhysRevB.33.7923
[18] S.A. Maier, Plasmonics: fundamentals and applications, Springer, (2007).
[19] F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, The optical Kerr effect in small metal particles and metal colloids: the case of gold, Applied Physics A: Materials Science and Processing 47 (1988) 347–357. https://doi.org/10.1007/BF00615498
[20] C.K. Chen, A.R.B. de Castro, Y.R. Shen, Surface-enhanced second-harmonic generation, Physical Review Letters 46 (1981) 145–148. https://doi.org/10.1103/PhysRevLett.46.145
[21] R. El-Ganainy, D.N. Christodoulides, C. Rotschild, M. Segev, Soliton dynamics and self-induced transparency in nonlinear nanosuspensions, Optics Express 15 (2007) 10208. https://doi.org/10.1364/OE.15.010207
[22] F. Ye, D. Mihalache, B. Hu, N.C. Panoiu, Subwavelength Plasmonic Lattice Solitons in Arrays of Metallic Nanowires, Physical Review Letters 104 (2010) 106802. https://doi.org/10.1103/PhysRevLett.104.106802
[23] N. Sepehri Javan, Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice, Journal of Applied Physics 118 (2015) 073104. https://doi.org/10.1063/1.4928810
[24] N. Sepehri Javan, Self-focusing of an intense laser pulse interacting with a periodic lattice of metallic nanoparticle, Phys. Plasmas 22 (2015) 093116. https://doi.org/10.1063/1.4931172
[25] N. Sepehri Javan, N. Amjadi, H. Mohammadzadeh, Dielectric coats effect on the third harmonic generation by a metallic nanoparticle lattice exposed to intense laser radiation, Physics of plasmas 23 (2016) 123114. https://doi.org/10.1063/1.4972139
[26] N. Sepehri Javan, F. Rouhi Erdi, M. N. Najafi, Magnetic field effect on the self-focusing of an intense laser pulse interacting with a bulk medium of graphite nanoparticles, Physics of plasmas 24 (2017) 052301. https://doi.org/10.1063/1.4981386
[28] N. Sepehri Javan, R. Naderali, M. Hosseinpour Azad, M. Najafi, Theoretical study of artificial Kerr effect on the self-focusing of laser in a dissipative suspension of silver nanoparticles, Physics of Plasmas 25 (2018) 082310. https://doi.org/10.1063/1.5043277
[29] N.S. Javan, R. Naderali, M.H. Azad, M. Najafi, Semi-Analytical Solution for Solitary Waves in a Dissipative Suspension of Metallic Nanoparticles, Plasmonics 1 (2018) 579-593. https://doi.org/10.1007/s11468-018-0837-9
[30] S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater, Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy, Physical Review B 65 (2002) 193408. https://doi.org/10.1103/PhysRevB.65.193408
[31] S.A. Maier, P.G. Kik, H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Applied Physics Letters 81 (2002) 1714. https://doi.org/10.1063/1.1503870
[32] S.A. Maier, P.G. Kik, H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides, Physical Review B 67 (2003) 205402. https://doi.org/10.1103/PhysRevB.67.205402
[33] C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory, Intext, Scranton, PA, (1971).
[36] L. Novotny, B. Hecht, D.W. Pohl, Interference of locally excited surface plasmons, Journal of Applied Physics 81 (1997) 1798–1806. https://doi.org/10.1063/1.364036
[37] A. Kheirandish, N. S.Javan, H. Mohammadzadeh, Polarization effect on the nonlinear dynamics of linear chain of interactional metallic nanoparticles exposed on a laser beam: an analytical approach, Physica Scripta 93 (2018) 095802. https://doi.org/10.1088/1402-4896/aad2ea
[38] A. Kheirandish, N. S.Javan, H. Mohammadzadeh, Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Scientific reports 10 (2020) 1-10. https://doi.org/10.1038/s41598-020-63066-9
[39] A. Kheirandish, N. S.Javan, H. Mohammadzadeh, Analytical approach to the surface plasmon resonance characteristic of metal nanoparticle dimer in dipole-dipole approximation, Plasmonics 15 (2020) 1807-1814. https://doi.org/10.1007/s11468-020-01198-4
[40] A. Kheirandish, N. S.Javan, H. Mohammadzadeh, Second harmonic generation from metal nanoparticle dimer: an analytical approach in dipole approximation, Physica Scripta 96 (2020) 025506. https://doi.org/10.1088/1402-4896/abd27d
[41] W.H. Weber, G.W. Ford, Propagation of optical excitations by dipolar interactions in metal nanoparticle chains, Physical Review B 70 (2004) 125429. https://doi.org/10.1103/PhysRevB.70.125429
[42] Y.-R. Zhen, K.H. Fung, C.T. Chan, Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles, Physical Review B 78 (2008) 035419. https://doi.org/10.1103/PhysRevB.78.035419
[43] J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material, Physical Review Letters 83 (1999) 4045. https://doi.org/10.1103/PhysRevLett.83.4045
[44] W.E. Lawrence W.E. Electron-electron scattering in the low-temperature resistivity of the noble metals, Physical Review B 13 (1976) 5316–5319. https://doi.org/10.1103/PhysRevB.13.5316
[45] W.E. Lawrence, J.W. Wilkins, Electron-electron scattering in the transport coefficients of simple metals. Physical Review B 7 (1973) 2317–2332. https://doi.org/10.1103/PhysRevB.7.2317
[46] A. Alabastri et al., Modeling of plasmonic resonances in metallic nanostructures: Dependence of the non-linear permittivity on system size and temperature. Materials 6 (2013) 4879-4910. https://doi.org/10.3390/ma6114879
[47] T. Holstein, Optical and infrared volume absorptivity of metals. Physical Review 96 (1954) 535–536. https://doi.org/10.1103/PhysRev.96.535
[49] J.A. McKay, A. Rayne, Temperature dependence of the infrared absorptivity of the noble metals. Physical Review B 13 (1976) 673-685. https://doi.org/10.1103/PhysRevB.13.673
[50] C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles. AWiley-International Publication, NewYork, USA, (1983).
[51] L. Genzel, T.P. Martin, U. Kreibig, Dielectric function and plasma resonances of small metal particles, Zeitschrift für Physik B 21 (1975) 339–346. https://doi.org/10.1007/BF01325393
[52] E.A. Coronado, G.C. Schatz, Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. Journal of Chemical Physics 119 (2003) 3926–3934. https://doi.org/10.1063/1.1587686
[53] M. Liu, P. Guyot-Sionnest, Synthesis and optical characterization of Au/Ag core/shell nanorods, Journal of Physical Chemistry B 108 (2004) 5882–5888. https://doi.org/10.1021/jp037644o
[54] S. Berciaud, L. Cognet, P. Tamarat, B. Lounis, Observation of intrinsic size effects in the optical response of individual gold nanoparticles, Nano Letters 5 (2005) 515–518. https://doi.org/10.1021/nl050062t
[55] M. Dehghanipour, M. Khanzadeh, S, Abotalebi, Enhancement of nonlinear absorption and optical limiting properties of graphene oxide in mixed with Fe2O3 nanoparticles, Journal of Research on Many-body Systems 8 (2018) 79-87. https://dx.doi.org/10.22055/jrmbs.2018.13943
[56] K.H. Bennemann, Non-linear optics in metals, Oxford University Press, (1998).