بررسی خواص الکترونی و اپتیکی صفحۀ دو بعدی بورون با گروه فضایی cmmm

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه فیزیک، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 گروه فیزیک، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

اخیراً نوع جدیدی از مواد دوبعدی با عنوان بروفن (صفحة دوبعدی بورون) به صورت موفقیت‌آمیز بر روی زیرلایه-هایی تحت شرایط خلا بسیار بالا سنتز شده است و مورد توجه بسیاری قرار گرفته است. در این مقاله با استفاده از نظریة تابعی چگالی و روش FP-LAPW+lo و تقریب GGA به بررسی خصوصیات الکترونی و اپتیکی بروفن با گروه فضایی cmmm پرداخته شده است. مطالعة خواص الکترونی رفتار فلزی را برای این ساختار دوبعدی نشان می‌دهد. خواص اپتیکی نیز نشان‌دهندة ناهمسانگردی اپتیکی این ترکیب برای دو راستای x و z است. همچنین بروفن دارای ضریب جذب مناسبی در ناحیة مرئی و در راستای محور تابشی x می‌باشد و در این ناحیه ضریب شکست کم‌تر از یک می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Electronic and Optical Properties of 2D Boron Sheet with cmmm Space Group

نویسندگان [English]

  • Tayebeh Abasi 1
  • Arash Boochani 2
  • Razieh Masharian 1
1 Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 Department of Physics, Kermanshah Branch, Islamic Azad University , Kermanshah, Iran
چکیده [English]

Recently a new type of two-dimensional material called borophene (boron Sheet) has been successfully synthesized on substrates under very high vacuum conditions and has received much attention. In this paper, using the density functional theory and FP-LAPW + lo method using the GGA approximation, we investigated the electronic and optical properties of borophene with the cmmm space group. The study shows the electronic properties of metallic behavior for this two-dimensional structure. The optical properties also indicate the optical anisotropy of this compound for both x and z directions. Borophene also has a good absorption coefficient in the visible region along the x-ray axis and that the refractive index in this region is less than one.

کلیدواژه‌ها [English]

  • Two-Dimensional Boron Sheet
  • Density functional theory
  • Electronic properties
  • optical properties
[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. https://doi.org/10.1126/Science.1102896
[2] F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, Epitaxial Growth of Two-DimenSional Stanene, Nature Materials 14 10 (2015) 1020. https://doi.org/10.1038/nmat4384
[3] A.K. Geim, I.V Grigorieva, Van der WaalS heteroStructureS, Nature 499 (2013)  419–425. https://doi.org/10.1038/nature12385
[4] Q.H. Wang, K. Kalantar-Zadeh, A. KiS, J.N. Coleman, M.S. Strano, ElectronicS and optoelectronicS of two-dimenSional tranSition metal dichalcogenideS, Nature Nanotechnology 7 (2012) 699–712. https://doi.org/10.1038/nnano.2012.193
[5] A.P. Sergeeva, I.A. Popov, Z.A. Piazza, W.L. Li, C. RomaneScu, L.S. Wang, A.I. Boldyrev, UnderStanding boron through Size-Selected cluSterS: Structure, chemical bonding, and fluxionality, Accounts of Chemical Research 47 (2014) 1349-1358. https://doi.org/10.1021/ar400310g
[6] X.J. Wu, J. Dai, Y. Zhao, Z.W. Zhuo, J.L. Yang, X.C. Zeng, Two-DimenSional Boron Monolayer SheetS, ACS Nano 6 (2012) 7443–7453. https://doi.org/10.1021/nn302696v
[7] Y.Y. Liu, E.S. Penev, B.I. YakobSon, Probing the SyntheSiS of two-dimenSional boron by firSt-principleS computationS,  Angew. Angewandte Chemie International Edition 52 (2013) 3156–3159.  https://doi.org/10.1002/anie.201207972
[8] A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B. L. FiSher, U. Santiago, J.R. GueSt, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. HerSam, N. GuiSinger, Synthesis of borophenes: Anisotropic, two-dimenSional boron polymorphs, Science 350 (2016) 1513. DOI: 10.1126/science.aad1080
 
[9] W. Li, L. Kong, C. Chena, J. Goua, Sh. Sheng, W. Zhang, H. Lid, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene, Science Bulletin 63 (2018) 282-286. https://doi.org/10.1016/j.Scib.2018.02.006
[10] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimenSional boron Sheets, Nature Chemistry 8 (2016) 563-8. https://doi.org/10.1038/nchem.2491
[11] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321 (2008) 385−388    
DOI: 10.1126/science.1157996
[12] B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, The Electronic, Optical, and Thermodynamic Properties of Borophene from First-principles Calculations. Journal of Materials Chemistry C 4 (2016) 3592–3598.  https://doi.org/10.1039/C6TC00115G    
[13] A.J. Mannix, Z. Zhang, N.P. GuiSinger, B.I. YakobSon, M.C. Hersam,  Borophene as a prototype for Synthetic 2D materials development, Nature Nanotechnology 13 (2018)  444–450.                      https://doi.org/10.1038/S41565-018-0157-4
[14] Z. Zhang, Y. Yang, G. Gao, B.I. YakobSon, Two-dimenSional boron monolayers mediated by metal Substrates, Angewandte Chemie International Edition 54 (2015) 13022–13026.                 https://doi.org/10.1002/anie.201505425
[15] H.J. Zhai, Y.F. Zhao, W.L. Li, Q. Chen, H. Bai, H.S. Hu, Z.A. Piazza, W.J. Tian, H.G. Lu, Y.B. Wu, Y.W. Mu, G.F. Wei, Z.P. Liu, J. Li, S.D. Li, L.S. Wang, Observation of an all-boron fullerene, Nature chemistry 6 8 (2014) 727-731.                                           https://doi.org/10.1039/D1SC00534K
 
[16] A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L. Wang, Planar hexagonal B36 as a potential basis for extended Single-atom layer boron SheetS, Nature Communications 5 (2014)  3113.                                         https://doi.org/10.1038/ncomms4113
[17] H. Wang, Q. Li, Y. Gao, F. Miao, X.F. Zhou, X. Wan, Strain effects on borophene: ideal Strength, negative PoSSion’S ratioand phonon inStability, New Journal of Physics 18 (2016) 073016. https://doi.org/10.1088/1367-2630/18/7/073016
[18] J. Thakur, M. Singh, H. Saini, M.K. Kashyap, Electronic and magnetic propertieS of Mo doped graphene; Full potential approach, AIPConference Proceedings 1661 (2015) 030032.  httpS://doi.org/10.1063/1.4915420    
[19] V. Kulish, O. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on Single-layer PhoSphorene, Physical Chemistry Chemical Physics 17 (2014)992.                        https://doi.org/10.1039/C4CP03890H
[20] J.Y. Li, H.Y. Lv, W.J. Lu, D.F. Shao, R.C. Xiao, Y.P. Sun, Tuning the electronic and magnetic properties of borophene by 3dtransition-metal atom adsorption. physics letters A 189 (2016) 3928-3931.  https://doi.org/10.1021/jp5058644
[21] R. Peköz, M. Konuk, M. Emin KilicE. Durgun, Two-DimenSional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties, ACS Omega 3 (2018) 1815−1822. https://doi.org/10.1021/acsomega.7b01730
[22] L. Adamska, S. Sharifzadeh, Fine-Tuning the Optoelectronic Properties of Freestanding Borophene by Strain, ACS Omega 2 (2017)  8290-8299.   https://doi.org/10.1021/acsomega.7b01232  
[23] Z-Q. Wang, T-Y, Lü, H-Q. Wang, Y. P. Feng, J-C. Zheng, Review of borophene and its potential applications. Frontiers of Physics 14 3 (2019) 33403.  10.1007/s11467-019-0884-5
[24] X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, XC. Zeng, Two-dimenSional boron monolayer Sheets. ACS Nano 6 (2012) 7443–7453. https://doi.org/10.1021/nn302696v
[25] S.F. Taghizadeh, Z.G. Majd, P. Amiri, B. Vaseghi, Effect of adsorption h-BN nano layer on the electronic and structural properties of WS2 monolayer by using first-principles study, Journal of Research on Many-body Systems 8 19 (2019) 47-58. 10.22055/JRMBS.2018.13959