همجوشی و پراکندگی شبه‌الاستیک واکنش‌های یون سنگین6,7Li+144Sm و6,7Li+152Sm با استفاده از محاسبات کانال کوپل‌شده در اطراف سد کولنی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه اراک، اراک، ایران

چکیده

در این مقاله، اثر برانگیختگی‌های چندفونونی در واکنش‌های همجوشی یون سنگین و توزیع سد همجوشی در انرژی‌های زیر سد برای واکنش‌های همجوشی 6,7Li+144,152Sm مطالعه و بررسی شده است؛ همچنین تابع برانگیختگی جزئی پراکندگی شبه-الاستیک و توزیع سد متناظر با آن برای واکنش‌های 6,7Li+144Sm در محاسبات کانال کوپل شده و با استفاده از پتانسیل مدل اپتیکی مورد بررسی قرار گرفته شده است. بررسی‌ها و مطالعات ما نشان داد که ساختار و تغییر شکل هستۀ پرتابه عامل مهمی در این محاسبات است. همچنین این بررسی‌ها نشان داد که برای واکنش 6Li+144Sm محاسبات CDCC تطابق خوبی با داده‌های تجربی دارد اما برای واکنش7Li+144Sm روش محاسبات CCFULL تطابق بهتری را نشان می‌دهد. به عنوان بهترین روش برای مطالعۀ رفتار سطح مقطع همجوشی در انرژیهای زیر سد کولنی، فاکتور اختر فیزیکی S(E) محاسبه شده است و از آن برای پیش بینی رفتار واکنش‌های 6,7Li+144,152Sm در بازه‌هایی از انرژی که آزمایش‌های تجربی قادر به اندازه گیری آن نیست، استفاده شده است. این نتایج مقدارهایی از انرژی که در آن S(E) بیشترین مقدار ممکن را دارد و مقدار فاکتور اختر فیزیکی در انرژی صفر برای این واکنش‌ها را پیش بینی می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Heavy-Ion Fusion and Quasi-Elastic Scattering Of 6,7Li+144Sm and 6,7Li+152Sm Reactions Using Coupled- Channel Calculation Around the Coulomb Barrier

نویسندگان [English]

  • Rahele Fereidonnejad
  • Hossein Sadeghi
Department of Physics, Faculty of Science, Arak University, Arak 8349-8-38156, Iran
چکیده [English]

In this work, the efficacy of fusion cross sections and barrier distributions of 6Li+144,152Sm and 7Li+144,152Sm reactions, as well as the large-angle partial quasi-elastic scattering excitation function and the corresponding barrier distribution for the 6,7Li+144Sm reactions in coupled channel calculation with optical model potential were studied. The results showed that the role of potential and the effect of projectile deformation in these calculations are important parameters. Investigation show that for 6Li+144Sm reaction CDCC calculation has a good agreement with experimental data and for 7Li+144Sm reaction, CCFULL calculation has a good agreement. Forasmuch as the best way to study the behavior of fusion cross section at low energies is the astrophysical S(E) factor, this quantity was used to predict the behavior of 6,7Li+144Sm and 6,7Li+152Sm reactions in energy intervals that the experiment could not be measured. This result predicts the value of energy that the astrophysical S(E) factor had a maximum value, and find the value of S- factor for 6,7Li+144Sm, 6,7Li+152Sm reactions at zero energy by the extrapolation method.

کلیدواژه‌ها [English]

  • heavy ion reaction
  • coupled channel calculation
  • optical model potential
  • fusion cross section
  • fusion barrier distribution
  • quasi-elastic scattering
[1] L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Husseinc, Fusion and breakup of weakly bound nuclei, Physics Reports 424 (2006)1. https://doi.org/10.1016/j.physrep.2005.10.006
[2] N. Keeley, R. Raabe, N. Alamanos and J. L. Sida, Fusion and direct reactions of halo nuclei at energies around the Coulomb barrier, Progress in Particle and Nuclear Physics 59 (2007) 579. https://doi.org/10.1016/j.ppnp.2007.02.002
[3] V.V. Parkar, et al., Fusion cross sections for the 9Be+124Sn reaction at energies near the Coulomb barrier, Physical Review C 82, (2010) 054601. https://doi.org/10.1103/PhysRevC.82.054601
[4] P.K. Rath, et al., Fusion of 6Li with 152Sm: Role of projectile breakup versus target deformation, Nuclear Physics A 874, (2012) 14. https://doi.org/10.1016/j.nuclphysa.2011.10.004 
[5] P.K. Rath, et al., Suppression of complete fusion in the 6Li+144Sm reaction, Physical Review C 79, (2009)051601.https://doi.org/10.1103/PhysRevC.79.051601
[6] R.G. Stokstad, et al., Fusion of 16O+ 148,150,152,154Sm at sub-barrier energies, Physical Review C21, (1980) 2427. https://doi.org/10.1103/PhysRevC.21.2427
[7] R.G. Stokstad, et al., Effect of nuclear deformation on heavy-ion fusion, Physical Review Letter 41, (1978) 465. https://doi.org/10.1103/PhysRevLett.41.465
[8] M. Beckerman, Subbarrier fusion of atomic nuclei, Physics Reports 129 (1985)145.
 [9] N. Rowley, New experimental results on emission and reaction barriers. Physics of Atomic Nuclei 66 8 (2003)1450. https://doi.org/10.1134/1.1601749
[10] Ikezoe, H.H. Ikezoe et al., AIP Conference Proceedings 853 69 (2006). in AIP Conf. Proc. 2006.
[11] S. Mitsuoka et al., Barrier Distributions Derived from Quasielastic Backscattering of 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn Projectiles on a 208Pb Target, Physical Review Letter 99, (2007) 182701. https://doi.org/10.1103/PhysRevLett.99.182701
 [12] S. Ntshangase et al., Barrier distribution for a ‘superheavy’nucleus–nucleus collision, Physics Letters B 651, (2007) 27.  https://doi.org/10.1016/j.physletb.2007.05.039
[13] N. Rowley et al., Capture cross sections for very heavy systems, Physics of Atomic Nuclei 79 (2006) 1093. https://doi.org/10.1134/S1063778806070015
[14] H. Timmers et al., Probing fusion barrier distributions with quasi-elastic scattering, Nuclear Physics A 584, (1995)190. https://doi.org/10.1016/0375-9474(94)00521-N
[15] K. Hagino, N. Rowley, Large-angle scattering and quasielastic barrier distributions, Physical Review C 69 (2004) 054610. https://doi.org/10.1103/PhysRevC.69.054610
[16] L. Canto et al., Fusion and breakup of weakly bound nuclei, Physics Reports 424, (2006) 1 https://doi.org/10.1016/j.physrep.2005.10.006.
[17] M. Dasgupta et al., Effect of breakup on the fusion of 6Li, 7Li, and 9Be with heavy nuclei, Physical Review C 70 (2004) 024606. https://doi.org/10.1103/PhysRevC.70.024606
 [18] M. Dasgupta et al., Fusion of 28Si+ 68Zn, 32S+ 64Ni, 37Cl+ 59Co and 45Sc+ 51V in the vicinity of the Coulomb barrier, Nuclear Physics A 539 (1992)351. https://doi.org/10.1016/0375-9474(92)90274-N
 [19] C. Lin et al., Effects of breakup of weakly bound projectile and neutron transfer on fusion reactions around Coulomb barrier. Nuclear Physics A 787 (2007) 281. https://doi.org/10.1016/j.nuclphysa.2006.12.044
[20] J. Lubian et al., Effect of breakup on fusion cross sections of the 8B+ 58Ni system by means of quasi-elastic angular distributions, Physical Review C 78 (2008) 064615. https://doi.org/10.1103/PhysRevC.78.064615
[21] D.S. Monteiro et al., Near-and subbarrier elastic and quasielastic scattering of the weakly bound 6Li projectile on 144Sm, Physical Review C 79 (2009) 014601. https://doi.org/10.1103/PhysRevC.79.014601
[22] S. Mukherjee et al., Quasi-elastic scattering in the 6Li+ 232Th reaction, Physical Review C 80 (2009) 014607.
[23] D.R. Otomar, et al., Breakup coupling effects on near-barrier quasi-elastic scattering of 6,7Li on 144Sm, Physical Review C 80 (2009) 034614. https://doi.org/10.1103/PhysRevC.80.034614
[24] R.A. Broglia, A. Winther, Heavy Ion Reaction Lecture Notes, Volume I: Elastic and Inelastic Reactions, Cummings Publishing Company Inc 1 114 (1981).
[25] I. Dutt, R.K. Puri, Systematic study of the fusion barriers using different proximity-type potentials for N=Z colliding nuclei: New extensions, Physical Review C 81, (2010) 044615. https://doi.org/10.1103/PhysRevC.81.044615
[26] C.K. Phookan, K. Kalita, Systematic study of Coulomb barrier of reactions induced by loosely bound projectiles using proximity potential, Nuclear Physics A 899, (2013) 29. https://doi.org/10.1016/j.nuclphysa.2013.01.008
[27] W. Reisdorf, Heavy-ion reactions close to the Coulomb barrier, Journal of Physics G: Nuclear and Particle Physics 20 (1994) 1297. https://doi.org/10.1088/0954-3899/20/9/004
[28] R. Fereidonnejad, H. Sadeghi, M. Ghambari, Coupled-channel calculation for cross section of fusion and barrier distribution of 16,17,18O+16O reactions, Astrophysics and Space Science 50 (2018) 363. https://doi.org/10.1007/s10509- 018-3272-7
[29] K. Hagino, N. Rowley, A.T. Kruppa, A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions, Computer Physics Communications 123 (1999) 143. https://doi.org/10.1016/S0010- 4655(99)00243-X
[30] P.K. Rath, et al., Complete fusion in 7Li+144,152Sm reactions, Physical Review C 88, (2013) 044617. https://doi.org/10.1103/PhysRevC.88.044617
[31] T. Kibedi, R.H. Spear, Reduced electric-octupole transition probabilities, B (E3; 01+→ 31−)an update, Atomic Data and Nucl. Data Table ,80, (2002) 35. https://doi.org/10.1006/adnd.2001.0871
[32] P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM (2012), Atomic Data and Nucl. Data Tables 1, (2016)109. https://doi.org/10.1016/j.adt.2015.10.002
[33] B. Pritychenko, M. Birch, B. Singh, M. Horoi, Tables of E2 transition probabilities from the first 2+ states in even–even nuclei, Atomic Data and Nucl. Data Tables 107 (2016) 1. https://doi.org/10.1016/j.adt.2015.10.001
[34] C.L. Jiang, et al., Influence of Nuclear Structure on Sub-Barrier Hindrance in Ni+Ni Fusion, Physical Review Letter 93 (2004) 012701. https://doi.org/10.1103/PhysRevLett.93.012701
[35] C.L. Jiang, et al., Fusion Hindrance for a Positive Q-Value System 24Mg+30Si, Physical Review Letter 113 (2014) 022701. https://doi.org/10.1103/PhysRevLett.113.022701