[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://10.1126/science.1102896
[4] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene, Nature 438 (2005) 197-200. https://doi.org/10.1038/nature04233
[6] P.K. Ang, S. Wang, Q. Bao, J.T. Thong, K.P. Loh, High-throughput synthesis of graphene by intercalation− exfoliation of graphite oxide and study of ionic screening in graphene transistor, Acs Nano 3 (2009) 3587-3594. https://doi.org/10.1021/nn901111s
[7] A. Kumar, A.L.M. Reddy, A. Mukherjee, M. Dubey, X. Zhan, N. Singh, L. Ci, W.E. Billups, J. Nagurny, G. Mital, P.M. Ajayan, Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application, ACS nano 5 (2011) 4345-4349. https://doi.org/10.1021/nn201527p
[8] I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, H. Stamatis, Graphene-based nanobiocatalytic systems: recent advances and future prospects, Trends in biotechnology 32 (2014) 312-320. https://doi.org/10.1016/j.tibtech.2014.04.004
[9] T. Tsoufis, C. Tampaxis, I. Spanopoulos, T. Steriotis, F. Katsaros, G. Charalambopoulou, P.N. Trikalitis, High-quality graphene sheets decorated with ZIF-8 nanocrystals, Microporous and Mesoporous Materials 262 (2018) 68-76. https://doi.org/10.1016/j.micromeso.2017.11.010
[10] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application, Accounts of chemical research 35 (2002) 1008-1017. https://doi.org/10.1021/ar010151m
[13] H. Mousavi, S. Mohmmadi, S. Jalilvand, Electrical conductivity of armchair carbon and boron nitride nanotubes in tight-binding model, Iranian Journal of Applied Physics 9 (2019) 83-94. https://doi.org/10.22051/JAP.2020.31076.1159
[15] M.D. Mosher, S. Ojha, Hybridization and structural properties: a physical organic chemistry experiment, Journal of chemical education 75 (1998) 888-890. https://doi.org/10.1021/ed075p888
[16] H.J. Rader, A. Rouhanipour, A.M. Talarico, V. Palermo, P. Samori, K. Müllen, Processing of giant graphene molecules by soft-landing mass spectrometry, Nature materials 5 (2006) 276-280. https://doi.org/10.1038/nmat1597
[17] P. Zygouri, T. Tsoufis, A. Kouloumpis, M. Patila, G. Potsi, A.A. Sevastos, Z. Sideratou, F. Katsaros, G. Charalambopoulou, H. Stamatis, P. Rudolf, Synthesis, characterization and assessment of hydrophilic oxidized carbon nanodiscs in bio-related applications. RSC advances 8 (2018) 122-131. https://doi.org/10.1039/C7RA11045F
[22] P. Ulloa, M. Pacheco, L.E. Oliveira, A. Latge, Electronic and optical properties of carbon nanodisks and nanocones, arXiv preprint arXiv:1302.6568 (2013). https://arxiv.org/abs/1302.6568v1
[23] M. Guo, I. Hernandez-Neuta, N. Madaboosi, M. Nilsson, W. Van Der Wijngaart, Efficient DNA-assisted synthesis of trans-membrane gold nanowires, Microsystems and nanoengineering 4 (2018) 1-8. https://doi.org/10.1038/micronano.2017.84
[24] B. Teschome, S. Facsko, T. Schönherr, , J. Kerbusch, A. Keller, A. Erbe, Temperature-dependent charge transport through individually contacted DNA origami-based Au nanowires, Langmuir 32 (2016) 10159-10165. https://doi.org/10.1021/acs.langmuir.6b01961
[26] A. Nieto-Márquez, R. Romero, A. Romero, J.L. Valverde, Carbon nanospheres: synthesis, physicochemical properties and applications, Journal of Materials chemistry 21 (2011) 1664-1672. https://doi.org/10.1039/C0JM01350A
[29] S.M.A Aleomraninejad, M. Solaimani, Trial wave function approach to calculate the Ground state energy of nonlinear Schrodinger equation in many body physics, Journal of Research on Many-body Systems 8 (2018) 73-82. https://dx.doi.org/10.22055/JRMBS.2018.13638
[30] C. Kittel, Introduction to solid state physics, 8th edn, Wiley, New York, (2004).
[31] E. Kaxiras, Atomic and electronic structure of solids, Cambridge University Press, United Kingdom, (2003).
[32] G. Grosso, G.P. Parravicini, Solid State Physics, 2nd ed., Academic Press, USA, (2014).
[34] A.W. Harrison, Structure and the properties of Solids, Dover, New York, (1989).
[35] H. Bruus, K. Flensberg, Many-Body quantum theory in condensed matter physics: an introduction, 2nd Ed., Oxford Univerity Press, United Kingdom, (2004).
[36] E.N. Economou, Green’s functions in quantum physics, 3rd Ed., Springer-Verlag, Berlin Heidelberg, (2006).
[37] H. Mousavi, J. Khodadadi, J.M. Kurdestany, M. Grabowski, Electronic thermal conductivity of armchair graphene nanoribbons and zigzag carbon nanotubes, Physica. E: Low-dimensional Systems and Nanostructures 85 (2017) 248-252. https://doi.org/10.1016/j.physe.2016.09.006
[38] W. Nolting, A. Ramakanth, Quantum theory of magnetism, Springer, New York, 2009.
[40] H. Mousavi, S. Jalilvand, F. Mirzaei, Magnetic and thermal characteristics of armchair graphene nanoribbons in the two-band Harrison model, Journal of Magnetism and Magnetic Materials 469 (2019) 405. https://doi.org/10.1016/j.jmmm.2018.08.064
[41] H. Mousavi, S. Jalilvand, J.M. Kurdestany, Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride, Physica B: Condensed Matter 502 (2016) 132-139. https://doi.org/10.1016/j.physb.2016.08.049
[42] H. Mousavi, M. Bagheri, J. Khodadadi, Magnetic susceptibility and heat capacity of graphene in two-band Harrison model, Physica E: Low-dimensional Systems and Nanostructures 74 (2015) 135-139. https://doi.org/10.1016/j.physe.2015.06.032
[44] C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Influence of an electric field on the optical properties of few-layer graphene with AB stacking, Physical Review B 73 (2006) 144427. https://doi.org/10.1103/PhysRevB.73.144427