Investigation of Heat Capacity and Magnetic Susceptibility of Carbon Nanodiscs and Nanowires in Tight-binding Approximation

Document Type : Full length research Paper

Authors

Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran

Abstract

In this study, the density of states, heat capacity, and magnetic susceptibility of carbon nanodiscs and nanowires with different diameters are calculated via the tight-binding approximation and the Green’s function approach. The results indicate that by increasing the diameter, the nanodiscs move from a semi-conductive and tend toward a semi-metal which is in agreement with other theoretical works. Also, increasing the diameter of the nanowires causes them to exhibit a metallic behavior. It is observed that increasing the diameter of these nanostructures increases the number of the Van Hove singularities in the density of states diagrams. A Schottky anomaly peak is seen in the heat capacity curves of these two nanostructures, which for the nanodisc/nanowire with the largest diameter, has a lower height. Due to the presence of the Van Hove singularities in the density of states diagram, a crossover is seen in the magnetic susceptibility curves, which splits these diagrams into two high temperature and low temperature regions. It is also concluded that at low temperatures, increase in the diameter of the nanodiscs and nanowires increases the magnetic susceptibility. These maximum values are also observed in the heat capacity and magnetic susceptibility curves of other graphene and graphene-like nanostructures.

Keywords

Main Subjects


[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162-163.     https://doi.org/10.1038/318162a0
[2] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
[3] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://10.1126/science.1102896
[4] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene, Nature 438 (2005) 197-200. https://doi.org/10.1038/nature04233
 [5] J. Wu, W. Pisula, K. Müllen, Graphenes as potential material for electronics, Chemical reviews 107 (2007) 718-747. https://doi.org/10.1021/cr068010r
[6] P.K. Ang, S. Wang, Q. Bao, J.T. Thong, K.P. Loh, High-throughput synthesis of graphene by intercalation− exfoliation of graphite oxide and study of ionic screening in graphene transistor, Acs Nano 3 (2009) 3587-3594. https://doi.org/10.1021/nn901111s
[7] A. Kumar, A.L.M. Reddy, A. Mukherjee, M. Dubey, X. Zhan, N. Singh, L. Ci, W.E. Billups, J. Nagurny, G. Mital, P.M. Ajayan, Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application, ACS nano 5 (2011) 4345-4349. https://doi.org/10.1021/nn201527p
[8] I.V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, H. Stamatis, Graphene-based nanobiocatalytic systems: recent advances and future prospects, Trends in biotechnology 32 (2014) 312-320. https://doi.org/10.1016/j.tibtech.2014.04.004
[9] T. Tsoufis, C. Tampaxis, I. Spanopoulos, T. Steriotis, F. Katsaros, G. Charalambopoulou, P.N. Trikalitis, High-quality graphene sheets decorated with ZIF-8 nanocrystals,  Microporous and Mesoporous Materials 262 (2018) 68-76. https://doi.org/10.1016/j.micromeso.2017.11.010
[10] R. Andrews, D. Jacques, D. Qian, T. Rantell, Multiwall carbon nanotubes: synthesis and application, Accounts of chemical research 35 (2002) 1008-1017. https://doi.org/10.1021/ar010151m
[11] A. Galano, Carbon nanotubes: promising agents against free radicals, Nanoscale 2 (2010) 373-380. https://doi.org/10.1039/B9NR00364A
[12] M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules 39 (2006) 5194-5205. https://doi.org/10.1021/ma060733p
[13] H. Mousavi, S. Mohmmadi, S. Jalilvand, Electrical conductivity of armchair carbon and boron nitride nanotubes in tight-binding model, Iranian Journal of Applied Physics 9 (2019) 83-94. https://doi.org/10.22051/JAP.2020.31076.1159
[14] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of modern physics 81 (2009) 109-162. https://doi.org/10.1103/RevModPhys.81.109
[15] M.D. Mosher, S. Ojha, Hybridization and structural properties: a physical organic chemistry experiment, Journal of chemical education 75 (1998) 888-890. https://doi.org/10.1021/ed075p888
[16] H.J. Rader, A. Rouhanipour, A.M. Talarico, V. Palermo, P. Samori, K. Müllen, Processing of giant graphene molecules by soft-landing mass spectrometry, Nature materials 5 (2006) 276-280. https://doi.org/10.1038/nmat1597
[17] P. Zygouri, T. Tsoufis, A. Kouloumpis, M. Patila, G. Potsi, A.A. Sevastos, Z. Sideratou, F. Katsaros, G. Charalambopoulou, H. Stamatis, P. Rudolf, Synthesis, characterization and assessment of hydrophilic oxidized carbon nanodiscs in bio-related applications. RSC advances 8 (2018) 122-131. https://doi.org/10.1039/C7RA11045F
[18] S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology, Science and Technology of advanced materials 10 (2009) 065002.        https://doi.org/10.1088/1468-6996/10/6/065002
[19] J.G.S. Moo, M. Pumera, Electrochemical properties of carbon nanodiscs, RSC advances 2 (2012) 1565-1568.  https://doi.org/10.1039/C1RA00866H
[20] M. Ezawa, Graphene nanoribbon and graphene nanodisk, Physica E: Low-dimensional Systems and Nanostructures 40 (2008) 1421-1423. https://doi.org/10.1016/j.physe.2007.09.031
[21] M. Ezawa, Metallic graphene nanodisks: Electronic and magnetic properties, Physical Review B 76 (2007) 245415. https://doi.org/10.1103/PhysRevB.76.245415
[22] P. Ulloa, M. Pacheco, L.E. Oliveira, A. Latge, Electronic and optical properties of carbon nanodisks and nanocones, arXiv preprint arXiv:1302.6568 (2013). https://arxiv.org/abs/1302.6568v1
[23] M. Guo, I. Hernandez-Neuta, N. Madaboosi, M. Nilsson, W. Van Der Wijngaart, Efficient DNA-assisted synthesis of trans-membrane gold nanowires, Microsystems and nanoengineering 4 (2018) 1-8. https://doi.org/10.1038/micronano.2017.84
[24] B. Teschome, S. Facsko, T. Schönherr, , J. Kerbusch, A. Keller, A. Erbe, Temperature-dependent charge transport through individually contacted DNA origami-based Au nanowires, Langmuir 32 (2016) 10159-10165. https://doi.org/10.1021/acs.langmuir.6b01961
[25] Y.W. Jiang, G. Gao, X. Zhang, H.R. Jia, F.G. Wu, Antimicrobial carbon nanospheres, Nanoscale 9 (2017) 15786-15795. https://doi.org/10.1039/C7NR04679K
[26] A. Nieto-Márquez, R. Romero, A. Romero, J.L. Valverde, Carbon nanospheres: synthesis, physicochemical properties and applications, Journal of Materials chemistry 21 (2011) 1664-1672. https://doi.org/10.1039/C0JM01350A
[27] E. Esmaili, M. Mardaani, H. Rabani, The electronic conductance of a nanowire including vibrating surface atoms, Journal of Research on Many-body Systems 6 (2015) 1-6. https://dx.doi.org/10.22055/JRMBS.2016.12454
[28] A. Tarokh, M. Mardaani, H. Rabani, The study of electronic conductance of a three terminal nanowire, Journal of Research on Many-body Systems 6 (2015) 13-17. https://dx.doi.org/10.22055/JRMBS.2016.12456
[29] S.M.A Aleomraninejad, M. Solaimani, Trial wave function approach to calculate the Ground state energy of nonlinear Schrodinger equation in many body physics, Journal of Research on Many-body Systems 8 (2018) 73-82. https://dx.doi.org/10.22055/JRMBS.2018.13638
[30] C. Kittel, Introduction to solid state physics, 8th edn, Wiley, New York, (2004).
[31] E. Kaxiras, Atomic and electronic structure of solids, Cambridge University Press, United Kingdom, (2003).
[32] G. Grosso, G.P. Parravicini, Solid State Physics, 2nd ed., Academic Press, USA, (2014).
[33] J.C. Slater, G.F. Koster, Simplified LCAO method for the periodic potential problem, Physical Review 94 (1954) 1498-1524. https://doi.org/10.1103/PhysRev.94.1498
[34] A.W. Harrison, Structure and the properties of Solids, Dover, New York, (1989).
[35] H. Bruus, K. Flensberg, Many-Body quantum theory in condensed matter physics: an introduction, 2nd Ed., Oxford Univerity Press, United Kingdom, (2004).
[36] E.N. Economou, Green’s functions in quantum physics, 3rd Ed., Springer-Verlag, Berlin Heidelberg, (2006).
[37] H. Mousavi, J. Khodadadi, J.M. Kurdestany, M. Grabowski, Electronic thermal conductivity of armchair graphene nanoribbons and zigzag carbon nanotubes, Physica. E: Low-dimensional Systems and Nanostructures 85 (2017) 248-252. https://doi.org/10.1016/j.physe.2016.09.006
[38] W. Nolting, A. Ramakanth, Quantum theory of magnetism, Springer, New York, 2009.
[39] H. Mousavi, S. Jalilvand, Electrical and thermal conductivities of few-layer armchair graphene nanoribbons, The European Physical Journal B 92 (2019) 4. https://doi.org/10.1140/epjb/e2018-90581-x
[40] H. Mousavi, S. Jalilvand, F. Mirzaei, Magnetic and thermal characteristics of armchair graphene nanoribbons in the two-band Harrison model, Journal of Magnetism and Magnetic Materials 469 (2019) 405. https://doi.org/10.1016/j.jmmm.2018.08.064
[41] H. Mousavi, S. Jalilvand, J.M. Kurdestany, Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride, Physica B: Condensed Matter 502 (2016) 132-139. https://doi.org/10.1016/j.physb.2016.08.049
[42] H. Mousavi, M. Bagheri, J. Khodadadi, Magnetic susceptibility and heat capacity of graphene in two-band Harrison model, Physica E: Low-dimensional Systems and Nanostructures 74 (2015) 135-139. https://doi.org/10.1016/j.physe.2015.06.032
[43] S. Jalilvand, H. Mousavi, Multi-band Tight-Binding Model of MoS2 Monolayer, Journal of Electronic Materials (2020) 1-10. https://doi.org/10.1007/s11664-020-08069-y
[44] C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Influence of an electric field on the optical properties of few-layer graphene with AB stacking, Physical Review B 73 (2006) 144427. https://doi.org/10.1103/PhysRevB.73.144427