Properties of excited squeezed Kerr states

Document Type : Full length research Paper

Authors

1 Department of Photonics, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Physics, Shiraz University of Technology, Shiraz, Iran

Abstract

The Kerr-like medium is a beneficial way to obtain the nonclassicality features of a quantum state of light. Moreover, squeezed states are well-known as the best nonclassical ones. Hence, by applying a two-photon parametric process as well as a Kerr medium, squeezed Kerr states can be generated to improve the nonclassicality aspects of Kerr states. In this paper, excited squeezed Kerr states are introduced in which the excitation is normally expressed via bosonic creation operator. Afterward, some physical properties of the introduced states are numerically studied. It is seen that with the help of excitation, the photon statistics of the radiation field can be changed from Poissonian statistics to sub-Poissonian one. Furthermore, adding photons to the considered quantum states remarkably enhances the depth and the domain of quadrature squeezing.

Keywords

Main Subjects


[1] R.W. Boyd, Nonlinear Optics, 4th edition, Academic Press, 2020.
[2] M. Hillery, Detection of nonclassical states using a Kerr medium, Physical Review A 44 7 (1991) 4578–4581. DOI: 10.1103/PhysRevA.44.4578
[3] A.N. Chaba, M.J. Collett, D.F. Walls, Quantum-nondemolition-measurement scheme using a Kerr medium, Physical Review A 46 3 (1992) 1499–1506. DOI: 10.1103/PhysRevA.46.1499
[4] C.C. Gerry, Generation of optical macroscopic quantum superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium, Physical Review A 59 5 (1999) 4095–4098. DOI: 10.1103/PhysRevA.59.4095
[5] G.R. Honarasa, M.K. Tavassoly, Generalized deformed Kerr states and their physical properties, Physica Scripta, 86 3 (2003) 35401-35410. DOI: 10.1088/0031-8949/86/03/035401
[6] R.E. Slushe1, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity, Physical Review Letters 55 22 (1986) 2409–2412. DOI: 10.1103/PhysRevLett.55.2409
[7] L.A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Generation of Squeezed States by Parametric Down Conversion, Physical Review Letters 57 20 (1986) 2520–2523. DOI: 10.1103/PhysRevLett.57.2520
[8] R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. Devoe, D.F. Walls, Broad-band parametric deamplification of quantum noise in an optical fiber, Physical Review Letters 57 6 (1986) 691–694. DOI: 10.1103/PhysRevLett.57.691
[9] A. Lupaşcu, S. Saito, T. Picot, P. De Groot, C. Harmans, J. Mooij, Quantum non–demolition measurement of a superconducting two-level system, Nature Physics 3 2 (2007) 119-123. DOI: 10.1038/nphys509
[10] M. Paternostro, M.S. Kim, B.S. Ham, Generation of entangled coherent states via cross–phase–modulation in a double electromagnetically induced transparency regime, Physical Review A 67 2 (2003) 023811. DOI: 10.1103/PhysRevA.67.023811
 
[11] D. Vitali, M. Fortunato, P. Tombesi, Complete quantum teleportation with a Kerr nonlinearity, Physical Review Letters, 85 2 (2000) 445-448. DOI: 10.1103/PhysRevLett.85.445
[12] C.C. Gerry. R. Grobe, Statistical properties of squeezed Kerr states, Physical Review A 49 3 (1994) 2033–2039. DOI: 10.1103/PhysRevA.49.2033
[13] G.S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitations on a coherent state, Physical Review A 43 1 (1991) 492-497. DOI: 10.1103/PhysRevA.43.492
 
[14] A. Zavatta, S. Viciani, M. Bellini, Quantum–to–classical transition with single-photon-added coherent states of light, Science, 306 5696 (2004) 660-662. DOI: 10.1126/science.1103190
[15] C.K. Hong, L. Mandel, Higher–order squeezing of a quantum field, Physical Review Letters 54 4 (1985) 323-325. DOI: 10.1103/PhysRevLett.54.323
[16] D.K. Mishra, Study of higher order non–classical properties of squeezed Kerr state, Optics Communications, 283 17 (2010) 3284-3290. DOI: 10.1016/j.optcom.2010.04.007
 
[17] P. Malpani, N. Alam, K. Thapliyal, A. Pathak, V. Narayanan, S. Banerjee, Lower-and higher-order nonclassical properties of photon added and subtracted displaced Fock states, Annalen der Physik, 531 2 (2019) 1800318. DOI: 10.1002/andp.201800318
 
[18] A. Zavatta, V. Parigi, M. Bellini, Experimental nonclassicality of single–photon–added thermal light states, Physical Review A 75 5 (2007) 052106. DOI: 10.1103/PhysRevA.75.052106
 
[19] V. Parigi, A. Zavatta, M. Bellini, Manipulating thermal light states by the controlled addition and subtraction of single photons, Laser Physics Letters 5 3 (2008) 246-251. DOI: 10.1002/lapl.200710119
 
[20] T. Kiesel, W. Vogel, M. Bellini, A. Zavatta, Nonclassicality quasiprobability of single–photon–added thermal states, Physical Review A 83 3 (2011) 032116. DOI: 10.1103/PhysRevA.83.032116
 
[21] N. Biagi, L.S. Costanzo, M. Bellini, A. Zavatta, Entangling macroscopic light states by delocalized photon addition, Physical Review Letters 124 3 (2020) 033604. DOI: 10.1103/PhysRevLett.124.033604
 
[22] Z. Ficek, M.R. Wahiddin, Quantum Optics for Beginners, 2nd edition, CRC Press. (2014) 350.
[23] L. Mandel, Sub-Poissonian photon statisticsin resonancefluoresence, Optics Letters 4 7 (1979) 205-207.  DOI: 10.1364/OL.4.000205
[24] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, (1997).
[25] W.P. Schleich, Quantum Optics in Phase Space, Wiley, New York, (2001).