The study of melting and desorption process of single-sided and both-sided fluorinated graphene using molecular dynamics

Document Type : Full length research Paper

Authors

1 Department of Physics, Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran

2 Department of Physical and Energy Engineering, of Amirkabir university of technology, Tehran, Iran

Abstract

Fluorine adsorption on graphene adjusts its band gaps, therefore fluorinated graphene is one of the functional compounds in the electronics industry. In this paper, we investigate the process of melting, fluorine desorption and structural changes due to increasing temperature in single-sided and both-sided fluorinated graphene within molecular dynamics theory and compare the results with the same configuration of hydrogenated graphene structures. Our results reveal that the transition phase from solid-state to the molten state in both-sided fluorinated graphene is accompanied by the formation of polymer chains of carbon and fluorine atoms if the concentration of fluorine atoms extend beyond 50%. In contrast, the results show that in single-sided fluorinated graphene the fluorine atoms are desorbed from the graphene surface, before the beginning of the transition phase. Our calculations also indicate that, unlike two-sided fluorinated graphene structures, the structural changes caused by the increase in temperature in single-sided and both-sided hydrogenated graphene are similar to that of single-sided fluorinated graphene, but at a lower temperature.

Keywords

Main Subjects


[1] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, nature 457 (7230) (2009) 706-710. https://doi.org/10.1038/nature07719
[2] W. Jin, Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide. Columbia University (2017). https://doi.org/10.7916/D8BC4047
[3] W. Yu, L. Sisi, Y. Haiyan, L. Jie. Progress in the functional modification of graphene /graphene oxide: A review. RSC Adv 10 (2020) 15328-15345. https://doi.org/10.1039/D0RA01068E
[4] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, K.S. Novoselov. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323 5914 (2009) 610-613. https://doi.org/10.1126/science.1167130
[5] L.A. Openov, A.I. Podlivaev. "Thermal desorption of hydrogen from graphane." Technical Physics Letters 36 1 (2010): 31-33. https://doi.org/10.1134/s1063785010010104
[6] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko & R.S. Ruoff. Preparation and characterization of graphene oxide paper. Nature 448 7152 (2007) 457. https://doi.org/10.1038/nature06016
[7] Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., & Liu, Z. Photochemical chlorination of graphene. ACS nano 5 7 (2011) 5957-5961. https://doi.org/10.1021/nn201731t
[8] R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, M.I. Katsnelson, Fluorographene: a two‐dimensional counterpart of Teflon, small 6 24 (2010) 2877-2884. https://doi.org/10.1002/smll.201001555
[9] F. Karlicky, M. Otyepka. Band gaps and optical spectra of chlorographene, fluorographene and graphane from G0W0, GW0 and GW calculations on top of PBE and HSE06 orbitals. Journal of chemical theory and computation 9 9 (2013) 4155-4164. https://doi.org/10.1021/ct400476r
[10] Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, Y. Ito. On the so-called “semi-ionic” C–F bond character in fluorine–GIC. Carbon 42 15 (2004) 3243-3249. https://doi.org/10.1016/j.carbon.2004.08.012
[11] F. Karlicky, K. Kumara Ramanatha Datta, M. Otyepka, R. Zboril. Halogenated graphenes: rapidly growing family of graphene derivatives, ACS nano 7 8 (2013) 6434-6464. https://doi.org/10.1021/nn4024027
[12] X. Gao, X.S. Tang. Effective reduction of graphene oxide thin films by a fluorinating agent: diethylaminosulfur trifluoride. Carbon 76 (2014) 133-140. https://doi.org/10.1016/j.carbon.2014.04.059
[13] M. Dubecký, F. Karlický, S. Minárik, L. Mitas. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. The Journal of Chemical Physics 14 153 (18) (2020) 184706. https://doi.org/10.1063/5.0030952
[14] R. Zbořil, F. Karlický, A.B. Bourlinos, T.A. Steriotis, A. Stubos, V. Georgakilas, M. Otyepka. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to grapheme, small 6 24 (2010) 2885-2891. https://doi.org/10.1002/smll.201001401
[15] H.Y. Liu, Z.F. Hou, C.H. Hu, Y. Yang, Z.Z. Zhu. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. The Journal of Physical Chemistry C 116 34 (2012) 18193-18201. https://doi.org/10.1021/jp303279r
[16] T.L. Makarova, A.L. Shelankov, A.A. Zyrianova, A.I. Veinger, T.V. Tisnek, E. Lähderanta, D.V. Pinakov. Edge state magnetism in zigzag-interfaced graphene via spin susceptibility measurements. Scientific reports 5 (2015) 13382. https://doi.org/10.1038/srep13382
[17] S.K. Singh, S. Costamagna, M. Neek-Amal, F.M. Peeters. Melting of partially fluorinated graphene: From detachment of fluorine atoms to large defects and random coils. The Journal of Physical Chemistry C 118 8 (2014) 4460-4464. https://doi.org/10.1021/jp4109333
[18] S.K. Singh, S.G. Srinivasan, M. NeekAmal, S. Costamagna, A.C. Van Duin, F.M. Peeters. Thermal properties of fluorinated graphene. Physical Review B 87 10 (2013) 104114. https://doi.org/10.1103/physrevb.87.104114
[19] S. Costamagna, M. Neek-Amal, J.H. Los, F.M. Peeters. Thermal rippling behavior of graphane. Physical Review B 86 4 (2012) 041408 https://doi.org/10.1103/physrevb.86.041408
[20] J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, E.S. Snow. Properties of fluorinated graphene films. Nano letters 10 8 (2010) 3001-3005. https://doi.org/10.1021/nl101437p
[21] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics 117 1 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
[22] A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A 105 41 (2001) 9396-9409. https://doi.org/10.1021/jp004368u
[23] A.C. van Duin, J.S.S. Damsté. Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry 34 4 (2003) 515-526. https://doi.org/10.1016/s0146-6380(02)00247-4
[24] K. Chenoweth, A.C. Van Duin, W.A. Goddard. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Physical Chemistry A 112 5 (2008) 1040-1053.https://doi.org/10.1021/jp709896w
[25] F. Castro-Marcano, A.M. Kamat, M.F, Russo Jr, A.C. van Duin, J.P. Mathews. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame 159 3 (2012)1272-1285. https://doi.org/10.1016/j.2011.10.022
[26] A. Sadeghi, M. Neek-Amal, G.R. Berdiyorov, F.M. Peeters. Diffusion of Fluorine on and between Graphene Layers. Physical Review B 91 1 (2015) 014304. https://doi.org/10.1103/physrevb.91.014304
[27] F. Karlický, R. Zbořil, M. Otyepka. Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. The Journal of chemical physics 137 3 (2012) 034709. https://doi.org/10.1063/1.4736998
[28] V.I. Artyukhov, L.A. Chernozatonskii. Structure and layer interaction in carbon monofluoride and graphane: A comparative computational study. The Journal of Physical Chemistry A 114 16 (2010) 5389-5396. https://doi.org/10.1021/jp1003566
[29] M.F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural networks 6 4 (1993) 525-533. https://doi.org/10.1016/s0893-6080(05)80056-5
[30] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Molecular physics 52 2 (1984) 255-268. https://doi.org/10.1080/00268978400101201
[31] W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical review A 31 3 (1985) 1695. https://doi.org/10.1103/physreva.31.1695
[32] O. Leenaerts, H. Peelaers, A.D. Hernández-Nieves, B. Partoens, F.M. Peeters. First principles investigation of graphene fluoride and graphane. Physical Review B 82 19 (2010) 195436. https://doi.org/10.1103/physrevb.82.195436
[33] A.R. Leach. (2001). Molecular modelling: principles and applications. Pearson education.
[34] A. Satoh. Introduction to molecular-microsimulation for colloidal dispersions. Elsevier, (2003). https://doi.org/10.1016/s1383-7303(03)80029-7
[35] K.V. Zakharchenko, A. Fasolino, J.H. Los, M.I. Katsnelson. Melting of graphene: from two to one dimension. Journal of Physics: Condensed Matter 23 20 (2011) 202202. https://doi.org/10.1088/0953-8984/23/20/202202
[36] E. Ganz, A.B. Ganz, L.M. Yang, M. Dornfeld. The initial stages of melting of graphene between 4000 K and 6000 K. Physical Chemistry Chemical Physics 19 5 (2017) 3756-3762. https://doi.org/10.1039/c6cp06940a
[37] B.S. Pujari, S. Gusarov, M. Brett, A. Kovalenko. Single-side-hydrogenated graphene: Density functional theory predictions. Physical Review B 84 4 (2011) 041402. https://doi.org/10.1103/physrevb.84.041402
[38] J.C. Charlier, X. Gonze, J.P. Michenaud. First-principles study of graphite monofluoride (CF) n. Physical Review B 47 24 (1993) 16162. https://doi.org/10.1103/physrevb.47.16162
[39] F. Sette, J. Stöhr, A.P. Hitchcock. Correlation between intramolecular bond lengths and K-shell σ-shape resonances in gas-phase molecules. Chemical physics letters 110 5 (1984) 517-520. https://doi.org/10.1016/0009-2614(84)87082-7
[40] D. O'Hagan. Understanding organofluorine chemistry. An introduction to the C–F bond. Chemical Society Reviews 37 2 (2008) 308-319. https://doi.org/10.1039/b711844a
[41] Z. Ao, Q. Jiang, S. Li, H. Liu, F.M. Peeters, S. Li, G. Wang. Enhancement of the stability of fluorine atoms on defective graphene and at graphene/fluorographene interface. ACS applied materials & interfaces 7 35 (2015) 19659-19665. https://doi.org/10.1021/acsami.5b04319
[42] J. Giraudet, M. Dubois, K. Guérin, C. Delabarre, A. Hamwi, F. Masin. Solid-state NMR study of the post-fluorination of (C2. 5F) n fluorine− GIC. The Journal of Physical Chemistry B 111 51 (2007) 14143-14151. https://doi.org/10.1021/jp076170g
[43] Y.D. Fomin, V.V. Brazhkin. Comparative study of melting of graphite and graphene. Carbon 157 (2020) 767-778. https://doi.org/10.1016/j.carbon.2019.10.065
[44] D. Yi, L. Yang, S. Xie, A. Saxena. Stability of hydrogenated graphene: a first-principles study. RSC Advances 5 26 (2015) 20617-20622. https://doi.org/10.1039/c5ra00004a
[45] F. Marsusi, N.D. Drummond, M.J. Verstraete. The physics of single-side fluorination of graphene: DFT and DFT+U studies. Carbon 144 (2019) 615-627. https://doi.org/10.1016/j.carbon.2018.12.089
[46] K.I. Ho, C.H. Huang, J.H. Liao, W. Zhang, L.J. Li, C.S. Lai, C.Y. Su. Fluorinated graphene as high-performance dielectric materials and the applications for graphene nanoelectronics, Scientific Reports 4 (2014) 5893. https://doi.org/10.1038/srep05893
[47] M. Zhu, X. Xie, Y. Guo, P. Chen, X. Ou, G. Yu, M. Liu. Fluorographenenanosheets with broad solvent dispersibility and their applications as amodified layer in organic field-effect transistors, Physical Chemistry Chemical Physics 15 (2013) 20992–21000. https://doi.org/10.1039/C3CP53383B
[48] K. Hou, P. Gong, J. Wang, Z. Yang, L. Ma, S. Yang, Construction of highly ordered fluorinated graphene composite coatings with various fluorine contents for enhanced lubrication performance, Tribology Letters 60 (2015) 6. http://dx.doi.org/10.10072Fs11249-015-0586-2
[49] K.I. Ho, M. Boutchich, C.Y. Su, R. Moreddu, E.S.R. Marianathan, L. Montes, C.S. Lai. A self-Aligned High-Mobility graphene transistor decoupling thechannel with fluoro- graphene to reduce scattering. Advanced Materials 27 (2015) 6519–6525. https://doi.org/10.1002/adma.201502544
[50] J. Zhao, C.R. Cabrera, Z. Xia, Z. Chen. Single-sided fluorine–functionalizedgraphene: a metal–free electrocatalyst with high efficiency for oxygenreduction reaction. Carbon 104 (2016) 56–63. https://doi.org/10.1016/j.apmt.2017.05.004
[51] D.D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zbořil, M. Otyepka. Chemistry, properties, and applications of fluorographene. Applied materials today 9 (2017) 60-70. https://doi.org/10.1016/j.apmt.2017.05.004
[52] S. Behzad, R. Chegel. Investigation of the electro-optical properties of graphene with BC3 substrate. Journal of reaserch on many body systems 8 16 (2018) 21-27. https://dx.doi.org/10.22055/jrmbs.2018.13633
[53] A. Behrouzikia, A. Shafiekhani. Theoretical study of effect of nickel and gold impurities on electronic properties of graphene using Density functional theory. Journal of reaserch on many body systems 9 1 (2019) 25-32. https://dx.doi.org/10.22055/jrmbs.2019.14584