بررسی تاثیر مرتبه تقریبات در روش انتشارگر زمان موهومی برای محاسبه‌ی تابع موج حالت پایه

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

دانشکده فیزیک، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

به منظور چگونگی تأثیرات مراتب مختلف بسط عملگر انتشار زمان موهومی برروی همگرایی، روش انتشار زمان موهومی بطور مثال برای نوسانگر هماهنگ ساده استفاده شده است. انتظار می‌رود، که با در نظرگرفتن انرژی پتانسیل، تابع موج حالت پایه سیستم و همچنین تابع موجی که به تابع موج حالت پایه سیستم نزدیک باشد، بتوان به تابع موج حالت پایه دست یافت. قابل مشاهده است که با هر بار اعمال عملگر زمان موهومی تابع موج حدس اولیه به تابع موج حالت پایه سیستم نزدیک می‌شود. در بررسی مراتب مختلف بسط عملگر نیز می‌توان مشاهده کرد که هر چه از مراتب بالاتر استفاده شود، تکرار اعمال این عملگر تا رسیدن به تابع موج حالت پایه سیستم کمتر خواهد بود. برای محاسبه انتگرال‌ها از روش محاسباتی مونته کارلو استفاده شده است. در نهایت برای بررسی مسئله‌ی فیزیکی این روش روی اتم هیدروژن امتحان شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the order of approximants affects in the ITP method for calculating the wave function of the ground state

نویسندگان [English]

  • Neda Beheshtirad
  • Vahid Mirzaei Mahmoudabadi
  • Farideh Shojaei
Faculty of Physics Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

In order to show the effects of different degrees of expansion of the imaginary time propagation operator on convergence, the imaginary time propagation method is used, for example, for a simple harmonic oscillator. Considering the potential energy, the wave function of the ground state of the system as well as the wave function that is close to the wave function of the ground state of the system can be seen that each time the imaginary time operator is applied, the wave of initial guess function approaches the wave function of the ground state of the system. Examining the different levels of expansion of the operator, it can be seen that the higher the level used, the less repetition of the operations of this operator to reach the wave function of the base state of the system. The Monte Carlo computational method was used to calculate the integrals. Finally, this method has been tested on the hydrogen atom to investigate the physical problem.

کلیدواژه‌ها [English]

  • Schrödinger Equation
  • Ground State
  • ITP Method
  • Imaginary Time Operator
  • Multi-particle Systems
[1] S.A. Chin, S. Janecek, E. Krotscheck, Any order imaginary time propagation method for solving the Schrödinger equation, Chemical Physics Letters 470 (2019) 342-346.  doi:10.1016/j.cplett.2009.01.068.
[2] S.A. Chin, E. Krotscheck, Fourth-Order Algorithms for Solving the Imaginary Time Gross-Pitaevskii Equation  in a Rotating Anisotropic Trap, Physical Review E Statistical Nonlinear and Soft Matter Physics 72 (2005) 036705. doi:10.1103/PhysRevE.72.036705
[3] P.J.J Luukko, E. Rasanen, Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields, Computer Physics Communications 184 (2013) 769-776. doi:10.1016/j.cpc.2012.09.029
[4] P. Bader, S. Blanes, F. Casas, Solving the Schrodinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients, The Journal of Chemical Physics 139 (2013) 124117. https://doi.org/10.1063/1.4821126
[5] M.J. Panza, Application of Power Method and Dominant Eigenvector /Eigenvalue Concept for Approximate Eigenspace Solutions to Mechanical Engineering Algebraic Systems, American Journal of Mechanical Engineering 6 (2018) 98-113.
http://dx.doi.org/10.12691/ajme-6-3-3
[6] O. Juillet. Ph. Chomaz, Exact Stochastic Mean-Field Approach to the Fermionic Many-Body Problem, Physical Review Letters 88 (2002) 142503. http://dx.doi.org/10.1103/PhysRevLett.88.142503
[7] P. Luukko, Spectral analysis and quantum chaos in two dimensional nanostructures, The University of Jyväskylä, Thesis (2015). http://urn.fi/URN:ISBN:978-951-39-6376-7
[8] L. Lehtovaara, J. Toivanen, & J. Eloranta,Solution of time-independent Schrödinger equation by the imaginary time propagation method, Journal of Computational Physics 221 (2007) 148-157. https://doi.org/10.1016/j.jcp.2006.06.006
[9] R.M. Wilcox, Exponential operators and parameter differentiation in quantum physics, Journal of Mathematical Physic 8 (1967) 962-982.  https://doi.org/10.1063/1.1705306
[10] P.J.J. Luukko, E. Räsänen, Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields, Computer Physics Communications 184 (2013) 769-776. https://www.researchgate.net/publication/256688588
[11] M.D. Feit, J.A. Jr. Fleck, A. Steiger, Solution of the Schrödinger Equation by a Spectral Method, Journal of Computational Physics 47 3 (1982) 412-433. https://doi.org/10.1016/00219991(82)90091-2
[12] J. Kocák, A new method for the solution of the Schrِdinger equation, Department of Physical and Macromolecular Chemistry, Master Thesis (2017).
[13] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA Journal of Numerical Analysis 9 2 (1989) 199–212. https://doi.org/10.1093/imanum/9.2.199