We will consider a toy model of generalization of three-dimensional (3D) gravity in the presence of higher curvature corrections known as extended new massive gravity (ENMG). By employing the Wald approach in the context of covariant phase space formalism, we compute the conserved charges of 3D rotating black holes in ENMG. In fact, we will obtain exact expressions for the mass and angular momentum of two kinds of rotating black holes the so called Banados-Teitelboim-Zanelli (BTZ) and warped anti-de Sitter (WAdS3) black holes. We show that these physical quantities not only satisfy the Smarr-like formula for the mass of a black hole but also fulfill the first law of black holes thermodynamics.
[2] L.B. Szabados, Quasi-local energy-momentum and angular momentum in general relativity, Living reviews in relativity 12.1(2009) 1-163. http://doi.org/10.12942/lrr-2004-4
[4] R.L. Arnowitt, S. Deser, C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Physical Review 116(1959) 1322-1330. https://doi.org/10.1103/PhysRev.116.1322
[5] R.L. Arnowitt, S. Deser, C.W. Misner, Canonical variables for general relativity, Physical Review117(1960) 1595–1602. https://doi.org/10.1103/PhysRev.117.1595
[6] H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Gravitational waves in general relativity 7 Waves from axisymmetric isolated systems, Proceedings of The Royal Society London A269 (1962) 21–52. https://doi.org/10.1098/rspa.1962.0161
[11] A. Ashtekar, L. Bombelli, R. Koul, Phase space formulation of general relativity without a 3+1 splittin, Lecture Notes in Physics278 (1987) 356–359. https://doi.org/10.1007/3-540-17894-5-378
[12] G. Barnich, F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charge, Nuclear Physics B 633 (2002) 3–82.
[13] J. Lee, R.M. Wald, Local symmetries and constraints, Journal of Mathematical Physics31 (1990) 725–743. https://doi.org/10.1063/1.528801
[15] V. Iyer, R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Physical Review D50 (1994) 846-864. https://doi.org/10.1103/PhysRevD.50.846
[16] J.D. Brown, J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Physical Review D47(1993) 1407–1419. https://doi.org/10.1103/PhysRevD.47.1407
[17] H. Leutwyler, A 2+1 Dimensional Model For The Quantum Theory Of Gravity, Nuovo Cimento A42 (1966) 159-178. https://doi.org/10.1007/BF02856201
[18] S. Carlip, Conformal Field Theory, (2+1) dimensional Gravity, and the BTZ Black hole, Classical and Quantum Gravity22 (2005) 85-124. https://doi.org/10.1088/0264-9381/22/12/R01
[24] M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proceedings of The Royal Society London A173(1939) 211. https://doi.org/10.1098/rspa.1939.0140
[27] J.M. Bardeen, B. Carter, S.W. Hawking, the four laws of black hole mechanics, Communications in mathematical physics31 (1973) 161-170. http://doi.org/10.1007/BF01645742
[29] K. Sfetsos, K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black hole, Nuclear Physics B517 (1998) 179-204. https://doi.org/10.1016/S0550-3213(98)00023-6
[30] R. Emparan, G.T. Horowitz, R.C. Myers, Exact description of black holes on branes II: comparison with BTZ black holes and black strings, Journal of High Energy Physics 01 (2000) 021. https://doi.org/10.1088/1126-6708/2000/01/021
[31] K.A. Moussa, G. Clement, C. Leygnac, The black holes of topologically massive gravity, Classical and Quantum Gravity20 (2003) L277. https://doi.org/10.1088/0264-9381/20/24/L01
[32] S. Detournay, D. Israel, J.M. Lapan, M. Romo, String theory on Warped AdS3 and Virasoro Resonances, Journal of High Energy Physics 01 (2011) 030. https://doi.org/10.1007/JHEP01(2011)030
[35] S. Nam, J.D. Park, S.H. Yi, AdS Black Hole Solutions in the Extended New Massive Gravity, Journal of High Energy Physics 07 (2010) 058. https://doi.org/10.1007/JHEP07(2010)058[36] A. Ghodsi, D.M. Yekta, On asymptotically AdS-like solutions of three dimensional massive gravity, Journal of High Energy Physics 06 (2012) 131. https://doi.org/10.1007/JHEP06(2012)13
[37] S. Nam, J.D. Park, Mass and angular momentum of black holes in 3D gravity theories with first order formalism, European Physical Journal C78 (2018) 535. https://doi.org/10.1140/epjc/s10052-018-6016-5
[38] S. Nam, J.D. Park, Warped AdS3 black hole in minimal massive gravity with first order formalism, Physical Review D 98(2018) 124034. https://doi.org/10.1103/PhysRevD.98.124034
[39] J.M. Maldacena, the large N limit of superconformal field theories and supergravity, International Journal of Theoretical Physics38 (1999) 1113. https://doi.org/10.1023/A:1026654312961
[40] D. Lovelock, The Einstein tensor and its generalizations, Journal of Mathematical Physics 12 (1971) 498–501. https://doi.org/10.1063/1.1665613
[41] H. Afshar, E.A. Bergshoeff, W. Merbis, Extended massive gravity in three dimensions, Journal of High Energy Physics08 (2014) 115. https://doi.org/10.1007/JHEP08(2014)115
[44] D. Anninos, W. Li, M. Padi, W. Song, A. Strominger, Warped AdS3 Black holes, Journal of High Energy Physics 03 (2009) 130. https://doi.org/10.1088/1126-6708/2009/03/130
[46] M. Cvetic, G.W. Gibbons, C.N. Pope, Universal Area Product Formulas for Rotating and Charged Black Holes in Four and Higher Dimensions, Physical Review Letters106 (2011) 121301. https://doi.org/10.1103/PhysRevLett.106.121301
[47] B. Chen, Z. Xue, J.J. Zhang, Note on thermodynamics method of black hole/CFT correspondence, Journal of High Energy Physics 03 (2013) 102. https://doi.org/10.1007/JHEP03(2013)102
Mahdavian Yekta, ِ. (2021). Conserved charges of 3D black holes in ENMG theory from Wald formalism. Journal of Research on Many-body Systems, 11(3), 166-178. doi: 10.22055/jrmbs.2021.17017
MLA
Mahdavian Yekta, ِ. . "Conserved charges of 3D black holes in ENMG theory from Wald formalism", Journal of Research on Many-body Systems, 11, 3, 2021, 166-178. doi: 10.22055/jrmbs.2021.17017
HARVARD
Mahdavian Yekta, ِ. (2021). 'Conserved charges of 3D black holes in ENMG theory from Wald formalism', Journal of Research on Many-body Systems, 11(3), pp. 166-178. doi: 10.22055/jrmbs.2021.17017
CHICAGO
ِ. Mahdavian Yekta, "Conserved charges of 3D black holes in ENMG theory from Wald formalism," Journal of Research on Many-body Systems, 11 3 (2021): 166-178, doi: 10.22055/jrmbs.2021.17017
VANCOUVER
Mahdavian Yekta, ِ. Conserved charges of 3D black holes in ENMG theory from Wald formalism. Journal of Research on Many-body Systems, 2021; 11(3): 166-178. doi: 10.22055/jrmbs.2021.17017