Microstructure and optical properties of Fe-doped ZnO thin films deposited by spray pyrolysis

Document Type : Full length research Paper


Department of Physics, Faculty of Science, Yasouj University, Yasouj, Iran


In the present study, Fe-doped ZnO (Zn1−xFexO) thin films were deposited by simple chemical spray pyrolysis technique on glass substrates at substrate temperature of 300 °C. The effect of Fe-doping concentration on the structural, morphological and optical properties of deposited films was studied. The X-ray diffraction (XRD) analyses indicates that all the obtained samples have a hexagonal wurtzite crystal structure without any secondary phases. The atomic force microscopy (AFM) images show that the morphology features changes with the increase of Fe-doping concentration and a denser microstructure and smoother surface obtained. The Fourier transform infrared (FTIR) spectra shows the presence of the stretching vibration mode of ZnO, functional groups, chemical bonding and iron in the doped ZnO thin films. Optical studies indicate that the absorption edge of deposited film shifted towards higher-wavelength direction and their optical band-gaps are decreased with the increase of Fe-doping concentration.


Main Subjects

[1] A. Facchetti, T. Marks, Transparent electronics: from synthesis to applications, Joun Wiley, New Yourk, (2010). https://www.wiley.com/en-us/exportProduct/pdf/9780470710593
[2] C.S. Prajapati, Ajay Kushwaha, P.P. Sahayو Experimental Investigation of Spray-Deposited Fe-Doped ZnO Nanoparticle Thin Films: Structural, Microstructural, and Optical Properties, Journal of Thermal Spray Technology 22 (2013) 1230-1241. https://link.springer.com/article/10.1007/s11666-013-9973-0
[3] A. Bakin, A. Behrends, A. Waag, H.-J. Lugauer, A. Laubsch, K. Streubel, ZnO-GaN hybrid heterostructures as potential cost-efficient LED technology, Proceedings of the IEEE 98 (2010) 1281-1287. https://ieeexplore.ieee.org/document/5430882
[4] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, D.-S. Seo, Transparent conductive Al-doped ZnO films for liquid crystal displays, Journal of Applied Physics 99 (2006) 124505. https://doi.org/10.1063/1.2206417
[5] A. Kumar, S.K. Saini, G. Sharma, A.K. Johar, Development and characterization of ZnO thin film for piezoelectric applications, Materials Today: Proceedings, 32 (2020) 261-263. https://doi.org/10.1016/j.matpr.2020.01.351
[6] T. Srinivasulu, K. Saritha, K.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis, Modern Electronic Materials 3 (2017) 76-85. https://doi.org/10.1016/j.moem.2017.07.001
[7] M. Koleva, P. Atanasov, N. Nedialkov, H. Fukuoka, M. Obara, Role of vanadium content in ZnO thin films grown by pulsed laser deposition, Applied Surface Science 254 (2007) 1228-1231. https://doi.org/10.1016/j.apsusc.2007.07.180
[8] S. Yılmaz, M. Parlak, Ş. Özcan, M. Altunbaş, E. McGlynn, E. Bacaksız, Structural, optical and magnetic properties of Cr doped ZnO microrods prepared by spray pyrolysis method, Applied Surface Science 257 (2011) 9293-9298. https://doi.org/10.1016/j.apsusc.2011.05.017
[9] P. Shishodia, Effect of cobalt doping on ZnO thin films deposited by sol-gel method, Thin Solid Films 612 (2016) 55-60. https://doi.org/10.1016/j.tsf.2016.05.028
[10] X. Zhao, E. Liu, R. Ramanujan, J. Chen, Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films, Current Applied Physics 12 (2012) 834-840. http://dx.doi.org/10.1016/j.cap.2011.11.016
[11] D.-L. Hou, X.-J. Ye, H.-J. Meng, H.-J. Zhou, X.-L. Li, C.-M. Zhen, G.-D. Tang, Magnetic properties of n-type Cu-doped ZnO thin films, Applied Physics Letters 90 (2007) 14250. https://aip.scitation.org/doi/abs/10.1063/1.2719034
[12] L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method, Journal of Crystal Growth 312 (2010) 851-855. https://doi.org/10.1016/j.jcrysgro.2009.12.062
[13] C. Wang, Z. Chen, Y. He, L. Li, D. Zhang, Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system, Applied Surface Science 255 (2009) 6881-6887. https://doi.org/10.1016/j.apsusc.2009.03.008
[14] W. Yanga, J. Liua, Z. Guana, Z. Liua, B.Chena, L. Zhao, Y. Lia, X. Caoa, Xin He, Chi. Zhang., Q. Zenga, Yuechun Fu, Morphology, electrical and optical properties of magnetron sputtered porous ZnO thin films on Si(100) and Si(111) substrates, Ceramics International 46 (2020) 6606-6611. https://doi.org/10.1016/j.ceramint.2019.11.147
[15] D. Chakraborti, J. Narayan, J. Prater, Room temperature ferromagnetism in Zn 1− x Cu x O thin films, Applied Physics Letters 90 (2007) 062504. https://doi.org/10.1063/1.2450652
[16] I. Soumahoro, R. Moubah, G. Schmerber, S. Colis, M.A. Aouaj, M. Abd-Lefdil, N. Hassanain, A. Berrada, A. Dinia, Structural, optical, and magnetic properties of Fe-doped ZnO films prepared by spray pyrolysis method, Thin Solid Films 518 (2010) 4593-4596. https://doi.org/10.1016/j.tsf.2009.12.039
[17] U. Alver, T. Kılınc¸ E. Bacaksız, S. Nezir, Structure and optical properties of Zn1−xFexO thin films prepared by ultrasonic spray pyrolysis, Materials Science and Engineering B 138 (2007) 74-77. https://doi.org/10.1016/j.mseb.2007.01.026
[18] S.E. Mousavi Ghahfarokhi, M. Rahimi Larki, I. Kazeminezhad,  Effect of annealing temperature on the structural and optical properties bismuth ferrite (BiFeO3) nanoparticle, Journal of Research on Many Body Systems 9 (2019) 179-191. https://dx.doi.org/10.22055/jrmbs.2019.14600
[19] V. Shinde, T. Gujar, C. Lokhande, R. Mane, S.-H. Han, Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study, Materials Chemistry and Physics 96 (2006) 326-330. https://doi.org/10.1016/j.matchemphys.2005.07.045
[20] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique, Journal of Alloys and Compounds 550 (2013) 63-70. https://doi.org/10.1016/j.jallcom.2012.09.076
[21] K. Raja, P. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method, Spectrochimica, acta part A: molecular and biomolecular spectroscopy 131 (2014) 183-188. https://doi.org/10.1016/j.saa.2014.03.047
[22] X. Wang, C. Song, D. Li, K. Geng, F. Zeng, F. Pan, The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film, Applied Surface Science 253 (2006) 1639-1643. https://doi.org/10.1016/j.apsusc.2006.02.059
[23] K. Vanheusden, C. Seager, W.t. Warren, D. Tallant, J. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied physics letters 68 (1996) 403-405. https://doi.org/10.1063/1.116699
[24] A. Goktas, I. Mutlu, Y. Yamada, Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol–gel method, Superlattices and Microstructures 57 (2013) 139-149. https://doi.org/10.1016/j.spmi.2013.02.010
[25] A. Rambu, V. Nica, M. Dobromir, Influence of Fe-doping on the optical and electrical properties of ZnO films, Superlattices and Microstructures 59 (2013) 87-96. https://doi.org/10.1016/j.spmi.2013.03.023
[26] M. Kaid, A. Ashour, Preparation of ZnO-doped Al films by spray pyrolysis technique, Applied surface science 253 (2007) 3029-3033. https://doi.org/10.1016/j.apsusc.2006.06.045