[1] T.D. Burchell, Carbon materials for advanced technologies, Elsevier Science, New York, (1999).
[2] R.E. Nightingale, Nuclear Graphite, New York and London Academic Press (1962).
[4] R. Coratger et al. Effects of ion mass and energy on the damage induced by an ion beam on graphite surfaces: a scanning tunneling microscopy study, Surface science 262 (1992) 208-218.
[5] A. Deslandes et al. Ion irradiated graphite exposed to fusion-relevant deuterium plasma, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 340 (2014) 21-26. https://doi.org/10.1016/j.nimb.2014.06.027
[6] N. Dutta, S. Mohanty, N. Buzarbaruah, Modification on graphite due to helium ion irradiation, Physics Letters A 380 (2016) 2525-2530.
[9] F. Sedighi et al. Damage study and comparison the effects of high-energy pulsed-protons of plasma focus device with low-energy protons of glow discharge plasma of tokamak, Plasma Research Express 2 (2020) 11. https://doi.org/10.1088/2516-1067/ab9d72
[10] R. Rayaprolu, S. Möller, C. Linsmeier, S. Spellerberg, Simulation of neutron irradiation damage in tungsten using higher energy protons, Nuclear Materials and Energy 9 (2016). https://doi.org/10.1016/j.nme.2016.09.008
[12] M. mohammadreza Seyyedhabashy, M.A. Tafreshi, S. Shafiei, A. Nasiri, Damage studies on irradiated tungsten by helium ions in a plasma focus device, Nuclear Engineering and Technology 52 (2020) 827-834. https://doi.org/10.1016/j.net.2019.10.003
[13] M.A. Asgarian, M.M.R. Seyedhabashi, B.S. Bidabadi, C. Rasouli, F. Sedighi, Radiation damage of tungsten surface irradiated with high-energy hydrogen and helium beams of plasma focus device, Fusion Engineering and Design 160 (2020) 112007. https://doi.org/10.1016/j.fusengdes.2020.112007
[14] M.J. Inestrosa-Izurieta, E. Ramos-Moore, L. Soto, Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus, Nuclear Fusion 55 (2015) 093011. https://doi.org/10.1088/0029-5515/55/9/093011
[15] M. mohammadreza Seyedhabashi et al. Damage study of irradiated tungsten and copper using proton and argon ions of a plasma focus device, Applied Radiation and Isotopes 154 (2019) 108875. https://doi.org/10.1016/j.apradiso.2019.108875
[16] M. mohammadreza Seyyedhabashy et al. Damage studies on irradiated tungsten by helium ions in a plasma focus device, Nuclear Engineering and Technology 52 (2019) 827-834. https://doi.org/10.1016/j.net.2019.10.003
[17] P. Grigorev, D. Terentyev, G. Bonny, E.E. Zhurkin, G. Van Oost, J.-M. Noterdaeme, Interaction of hydrogen with dislocations in tungsten: an atomistic study, Journal of Nuclear Materials 465 (2015) 364-372. https://doi.org/10.1016/j.jnucmat.2015.06.013
[18] R. Niranjan, R. Rout, R. Srivastava, Y. Chakravarthy, P. Mishra, T. Kaushik, S.C. Gupta, Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device, Applied Surface Science 355 (2015) 989-998. https://doi.org/10.1016/j.apsusc.2015.07.192
[21] R. Niranjan et al. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device, Applied Surface Science 355 (2015) 989-998. https://doi.org/10.1016/j.apsusc.2015.07.192
[22] R.F. Egerton et al. Basic questions related to electron-induced sputtering in the TEM, Ultramicroscopy 110 (2010) 991-997. https://doi.org/10.1016/j.ultramic.2009.11.003
[23] M.A. Amirkhani et al. The effects induced by proton irradiation on structural characteristics of nuclear graphite, Journal of Radioanalytical and Nuclear Chemistry 321 (2019) 701-709. https://doi.org/10.1007/s10967-019-06615-5