Investigation of Sulfur Hexafluoride Plasma effect on the surface properties of recycled post-consumer PVC

Document Type : Full length research Paper

Authors

1 Faculty of Physics, University of Tabriz, Tabriz, Tabriz, Iran

2 Department of Atomic and Molecular Faculty of Physics, University of Tabriz, Tabriz, Tabriz, Iran

Abstract

Today, polyvinyl chloride (PVC) is used in the automotive industry, production of flooring and building facades, water and wastewater pipes, electronic circuits, etc. Considering the non-biodegradability of polymers, PVC products are produced and accumulated as polymer waste. One of the methods for recycling polymers with minimal destruction of chemical structure is the plasma treatment. In this study, the effect of hexafluoride sulfur plasma on recycled PVC at different times and pressures is investigated. The best exposure time was obtained a 5 and 10 minute for possess a hydrophobicity surface at a pressure 0/16 torr of the plasma processing chamber, in which case the contact angle was 101 °. The electrical resistivity analysis showed that modifying the surface of PVC samples by plasma Sulfur hexafluoride at a certain pressure and time would increase the electrical resistance of their surface.

Keywords

Main Subjects


[1] G. Cravotto, Polymer chemistry: a practical approach, Oxford University Press, (2005).
[2] W. Ao, J.S. Lim, P.K. Shin, Preparation and characterization of plasma polymerized methyl methacrylate thin films as gate dielectric for organic thin film transistor. Journal of Electrical Engineering and Technology 6 (2011) https://dx.doi.org/10.5370/JEET.2011.6.6.836
[3] M.C. Wu, H.C. Liao, H.H. Lo, Chen, S., Lin, Y.Y., Yen, W.C., Zeng, T.W., Chen, C.W., Chen, Y.F. Su, W.F. Nanostructured polymer blends (P3HT/PMMA): Inorganic titania hybrid photovoltaic devices, Solar energy materials and solar cells 93(2009). https://doi.org/10.1016/j.solmat.2008.11.024
[4] R.H. Burgess, Manufacture and Processing of PVC. CRC Press (2014).
[5] F.P. La Mantia, Recycling of PVC and mixed plastic waste. Canada. ChemTec Publishing, (1996).
[6] T. Yoshioka, K. Furukawa, A. Okuwaki, Chemical recycling of rigid-PVC by oxygen oxidation in NaOH solutions at elevated temperatures. Polymer degradation and stabilit, 67 (2000). https://doi.org/10.1016/S0141-3910(99)00128-7
[7] S.C. Kou, G. Lee, C.S. Poon, W.L. Lai, Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Management, 29 (2009). https://doi.org/10.1016/j.wasman.2008.06.014
[8] S. Tang, O.J. Kwon, N. Lu, H.S. Choi, Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surface and Coatings Technology 195 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.071.
[9] S. Tang, N. Lu, J.K. Wang, S.K. Ryu, H.S. Choi, Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment, The Journal of Physical Chemistry C 111(2007) https://doi.org/10.1021/jp065907j
[10] K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization- A review, Plasma processes and polymers 3 (2006). https://doi.org/10.1002/ppap.200600021
[11] O.J. Kwon, S. Tang, S.W. Myung, N. Lu, H.S. Choi, Surface characteristics of polypropylene film treated by an atmospheric pressure plasma, Surface and Coatings Technology 192 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.018
[12] S. Tang, O.J. Kwon, N. Lu, H.S. Choi, Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surface and Coatings Technology 195 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.071
[13] S. Tang, N. Lu, J.K. Wang, S.K. Ryu, H.S. Choi, Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment, The Journal of Physical Chemistry C 111 (2007). https://doi.org/10.1021/jp065907j
[14] K.S. Siow, L. Britcher, S. Kumar, H.J. Griesser, Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization‐a review, Plasma processes and polymers 3 (2006). https://doi.org/10.1002/ppap.200600021
[15] R. Hippler, S. Pfau, M. Schmidt, K.H. Schoenbach, Low temperature plasma physics: fundamental aspects and applications, Berlin, Wiley-VCH (2001).
[16] E.C. Rangel, W.C.A. Bento, M.E. Kayama, W.H. Schreiner, N.C. Cruz, Enhancement of polymer hydrophobicity by SF6 plasma treatment and argon plasma immersion ion implantation. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 35 (2003). https://doi.org/10.1002/sia.1518
[17] W.C. Bento, R.Y. Honda, M.E. Kayama, W.H. Schreiner, N.C. Cruz, E.C. Rangel, Hydrophilization of PVC surfaces by argon plasma immersion ion implantation. Plasmas and polymers, 8(2003).    http://hdl.handle.net/11449/35202
[18] D. Hegemann, H. Brunner, C. Oehr, Plasma treatment of polymers for surface and adhesion improvement, Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms 208 (2003). https://doi.org/10.1016/S0168-583X(03)00644-X
[19] S.J. Park, K.S. Cho, C.G. Choi, Effect of fluorine plasma treatment on PMMA and their application to passive optical waveguides, Journal of colloid and interface science, 258 (2003). https://doi.org/10.1016/S0021-9797(02)00094-2
[20] G. Lins, Emission spectroscopy and Mie scattering on an inductively coupled plasma torch. Contributions to Plasma Physics, 40 (2000).
[21] G. Holland, A.N. Eaton, Applications of plasma source mass spectrometry. Cambridge. roy.soc.chem (1991).
[22] R. Förch, H. Schönherr, H. Schonherr, A.T.A. Jenkins, eds., Surface design: applications in bioscience and nanotechnology. John Wiley & Sons (2009).
[23] J.T. Cieśliński, K.A. Krygier, Sessile droplet contact angle of water–Al2O3, water–TiO2 and water–Cu nanofluids, Experimental Thermal and Fluid Science 59 (2014). https://doi.org/10.1016/j.expthermflusci.2014.06.004
[24] J.H. Moon, D.Y. Kim, S.H .Lee, Spreading and receding characteristics of a non-Newtonian droplet impinging on a heated surface, Experimental Thermal and Fluid Science, 57 (2014). https://doi.org/10.1016/j.expthermflusci.2014.04.003
[25] C. Della Volpe, D. Maniglio, M. Morra, S. Siboni, The determination of a ‘stable-equilibrium’contact angle on heterogeneous and rough surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (2002).     https://doi.org/10.1016/S0927-7757(02)00072-9
[26] M. Bortolotti, M. Brugnara, C. Della Volpe, S. Siboni, Numerical models for the evaluation of the contact angle from axisymmetric drop profiles: a statistical comparison, Journal of colloid and interface science 336 (2009). https://doi.org/10.1016/j.jcis.2009.03.055
[27] J.B. Lee, N. Laan, K.G. de Bruin, G. Skantzaris, N. Shahidzadeh, D. Derome, J. Carmeliet, D. Bonn, Universal rescaling of drop impact on smooth and rough surfaces,Journal of Fluid Mechanics, 786 (2016). https://hdl.handle.net/11245/1.508925
[28] N. Giovambattista, P.G. Debenedetti, P.J. Rossky, Effect of surface polarity on water contact angle and interfacial hydration structure, The Journal of Physical Chemistry B, 111 (2007). https://doi.org/10.1021/jp071957s
[29] W. Grellmann, S. Seidler, eds., Polymer testing. Carl HanserVerlag GmbH Co KG (2013).
[30] B.N. Hendy, Measurement of the electrical conductivity of antistatic polymer film surfaces, Journal of Physics E: Scientific Instruments, 13 (1980). https://doi.org/10.1088/0022-3735/13/9/004