مطالعه ی ویژگی های ساختاری و مغناطیسی آلیاژ نانو‌ساختار آهن-کبالت-نیکل-مس تهیه شده به وسیله‌ی آلیاژسازی مکانیکی

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه فیزیک، دانشکده علوم و فناوری های نانو و زیستی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

این مطالعه، تحول میکروساختاری و مغناطیسی آلیاژ نانو‌ساختار 90Cu10(Fe50Co30Ni20)، تهیه شده به ‌وسیله‌ی آلیاژسازی مکانیکی را بررسی می کند. خواص ساختاری و مغناطیسی، توسط پراش پرتو‌ ایکس، میکروسکوپ الکترونی روبشی، طیف سنجی پراش انرژی پرتو ایکس و مغناطیس‌سنجی ارتعاشی ارزیابی می شوند. مورفولوژی پودرها نشان می دهد، در زمان های پایانی آسیا کاری، توزیع اندازه ذرات در محدوده کمتری نسبت به زمان های ابتدایی آسیاکاری قرار دارد. نتایج پراش پرتو‌ ایکس نشان می‌دهد، با افزایش زمان آسیاکاری، قله های عناصر تشکیل دهنده دارای پهن شدگی می شوند. در طول فرآیند آلیاژسازی مکانیکی، کمینه مقادیر اندازه بلورک ها پس از 32 ساعت رخ می دهد. عناصر کبالت، نیکل و مس، پس از 16 ساعت بیشترین انحلال خود را نشان می دهند. در پایان زمان آسیاکاری، متوسط اندازه‌ی بلورک ها و کرنش به‌ترتیب حدود 12/29 نانومتر و 221/0% رسیده است. تغییرات اندازه‌ی بلورک ها ، باعث افزایش مغناطش اشباع تا حدود emu/g 26/127 و میدان پسماندزدای مغناطیسی نزدیک به Oe 86/82 به‌ترتیب برای زمان‌های آسیاکاری 2 و 48 ساعت شده است. این آلیاژ، خواص مغناطیسی بسیار نرم تری را نسبت به آلیاژ تهیه شده، گزارش شده در پژوهش پیشین Fe50Co30Ni20 [15]، نشان می دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of structural and magnetic properties of nanostructured Fe-Co-Ni-Cu alloy processed by mechanical alloying

نویسندگان [English]

  • Vahid Mohammad-Hosseini
  • Hossein Raanaei
Department of Physics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
چکیده [English]

In this study, microstructural and magnetic evolution of nanostructured (Fe50Co30Ni20)90Cu10 alloy prepared by mechanical alloying are investigated. The structural and magnetic properties have been evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The powder morphology shows that for the powders at the final part of milling time, the particle size distribution falls into a narrower range compared to the powders at the initial time. X-ray diffraction results indicate that, with increasing milling time, the peak broadening of the elements become wider. During mechanical alloying process, after 32 h, two low values of crystallite size are happened. The most dissolved of cobalt, nickel and copper elements are occurred after 16 h of milling time. However, at the last part of the milling time, the crystallize size and lattice strain reaches to about 29.12 nm and 0.221 % respectively. The variation of crystallite size enhances magnetization saturation to about 127.26 emu/g and increases coercivity to approximately 82.86 Oe for milling time of 2 and 48 h, respectively. This alloy exhibits much softer magnetic behavior compared to the Fe50Co30Ni20 alloy reported in the recent work [15].

کلیدواژه‌ها [English]

  • mechanical alloying
  • X-ray diffraction
  • Magnetic measurements
[1] C. Koch, Top-down synthesis of nanaostructured materials: mechanical and thermal processing methods, Journal of Reviews on Advanced Materials Science 5 (2003) 91-99. http://wwwproxy.ipme.ru/e-journals/RAMS/no_2503/koch/koch.pdf
[2] C. Capdevila, U. Miller, H. Jelenak, H. Bhadeshia, Strain heterogeneity and the production of coarse grains in mechanically alloyed iron-based PM2000 alloy, Materials Science and Engineering A 316 (2001) 161-165. https://doi.org/10.1016/S0921-5093(01)01234-5
[3] H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCS), Materials Process Technology 189 (2007) 1–12. https://doi.org/10.1016/j.jmatprotec.2007.02.034
[4] R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, Preparation of nanocrystalline Fe–Ni powders by mechanical alloying used in soft magnetic composites, Journal of Magnetism and Magnetic Materials 320 (2008) 1089–1094. https://doi.org/10.1016/j.jmmm.2007.10.033
[5] T. Sourmail, Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties, Journal of Materials Science 50 (2005) 816–880. https://doi.org/10.1016/j.pmatsci.2005.04.001
[6] M. McHenry, M. Willard, D. Laughlin, Amorphous and nanocrystalline materials for applications as soft magnets, Journal of Materials Science 44 (1999) 291–433. https://doi.org/10.1016/S0079-6425(99)00002-X
[7] D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hall, London (1991).
[8] H. Moumeni, S. Alleg, J.M. Greneche, Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying, Journal of Alloys and Compounds, 386 (2005) 12–19. https://doi.org/10.1016/j.jallcom.2004.05.017
[9] B. Bhoi, V. Srinivas, V. Singh, Evolution of microstructure and magnetic properties of nanocrystalline Fe70-xCuxCo30 alloy prepared by mechanical alloying, Journal of Alloys and Compounds 496 (2010) 423–428. https://doi.org/10.1016/j.jallcom.2010.01.155
[10] D. Ping, K. Hono, H. Kanekiyo, S. Hirosawa. Microalloying effect of Cu and Nb on the microstructure and magnetic properties of Fe3B/Nd2Fe14B nanocomposite permanent magnets, IEEE Transaction on Magnetism 35 (1999) 3262–3264. 10.1109/20.800492
[11] Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrrafine grain structure, Journal of Applied Physics 64 (1988) 6044–6046. https://doi.org/10.1063/1.342149
[12] A. Sharifati, S. Sharafi, Structural and magnetic properties of nanostructured(Fe70Co30)100−xCux alloy prepared by high energy ball milling, Materials and Design 41 (2012) 8-15. https://doi.org/10.1016/j.matdes.2012.04.047
[13] H.A. Baghbaderani, S. Sharafi, M. Delshad Chermahini, Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying, Powder Technology 230 (2012) 241-246. https://doi.org/10.1016/j.powtec.2012.07.039
[14] M. Delshad Chermahini, S. Sharafi, H. Shokrollahi, M. Zandrahimi, Microstructural and magnetic properties of nanostructured Fe and Fe50Co50 powders prepared by mechanical alloying, Journal of Alloys and Compounds 474 (2009) 18-22. https://doi.org/10.1016/j.jallcom.2008.06.144
[15] H. Raanaei, H. Eskandari, V. Mohammad-Hosseini, Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying, Journal of Magnetism and Magnetic Materials, 398 (2016) 190–195. https://doi.org/10.1016/j.jmmm.2015.09.031
[16] L. Lutterotti, MAUD version 2.55, Materials Analysis Using Diffraction. A Rietveld extended program to perform the combined analysis. It can be used to fit diffraction, fluorescence and reflectivity data using X-ray, neutron, TOF or electrons, (2015). http://maud.radiographema.eu/
 [17] J. Huang, Y. Wu, H. Ye, K. Lu, Allotropic transformation of cobalt induced by ball milling, Nanostructured Materials 6 (1995) 723–726. https://doi.org/10.1016/0965-9773(95)00160-3
[18] F. Cardellini, G. Mazzone, Thermal and structural study of the hcp-to-fcc transformation in cobalt, Philosophical Magazine A 67 (1993) 1289–300. https://doi.org/10.1080/01418619308225355
[19] B.H. Lee, B.S. Ahn, D.G. Kim, S.T. Oh, H. Jeon, J. Ahn, Y.D. Kim, Microstructure and magnetic properties of nanosized Fe–Co alloy powders synthesized by mechanochemical and mechanical alloying process, Materials Letters 57 (2003) 1103-1107. https://doi.org/10.1016/S0167-577X(02) 00938-2
[20] G.P. Tiwari, R.S. Mehrotra, Diffusion and Melting, Defect and Diffusion Forum 279 (2008) 23-37.
10.4028/www.scientific.net/DDF.279.23
 [21] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. Chapman & Hall, London, (1992).
[22] J.C. Slater, Atomic Radii in Crystals, Materials Chemistry and Physics 41 (1964) 3199-3204. https://doi.org/10.1063/1.1725697
[23] C. Kittel, Introduction to solid state physics, 8th ed, John Wiley, New York, (2005).
[24] A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions 41 (2000) 1372–1378. https://doi.org/10.2320/matertrans1989.41.1372
[25] F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Materialia, 51 (2003) 4107- 4119. https://doi.org/10.1016/S1359-6454(03)00230-1
 [26] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science 46 (2001) 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9
[27] J. Eckert, J.C. Holzer, C.E. Krill, W.L. Johnson, Structural and thermodynamics properties of nanocrystalline fcc metals prepared by mechanical alloying, Journal of Materials Research 7 (1992) 1751–1761. https://doi.org/10.1557/JMR.1992.1751
[28] A. Barbosa, G. Bobrovnitchii, A. Skury, R. Guimaraes, M. Filgueira,
Structure, microstructure and mechanical properties of PM Fe–Cu–Co alloys, Materials and Design 31 (2010) 522–526. https://doi.org/10.1016/j.matdes.2009.07.027
[29] Y. Shen, H.H. Hng, J. Tien, Synthesis and characterization of high-energy ball milled Ni-15%Fe-5%Mo, Journal of Alloys and Compounds 379 (2004) 266-271. https://doi.org/10.1016/j.jallcom.2004.02.032
[30] H. Raanaei, V. Mohammad-Hosseini. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co–Ni)70Ti10B20 alloyed powders, Journal of Magnetism and Magnetic Materials 414 (2016) 90–96. https://doi.org/10.1016/j.jmmm.2016.04.040
[31] L. Karimi, H. Shokrollahi, Structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni63Fe13Mo4Nb20 powders prepared by mechanical alloying, Journal of Alloys and Compounds 509 (2011) 6571- 6577. https://doi.org/10.1016/j.jallcom.2011.03.060
[32] E. Jartych. On the magnetic properties of mechanosynthesized Co–Fe–Ni ternary alloys, Journal of Magnetism and Magnetic Materials 323 (2011) 209–216. https://doi.org/10.1016/j.jallcom.2011.03.060
[33] T. Pikula, D. Oleszak, M. Pękała, E. Jartych, Structure and some magnetic properties of mechanically synthesized and thermally treated Co–Fe–Ni alloys, Journal of Magnetism and Magnetic Materials 320 (2008) 413- 420. https://doi.org/10.1016/j.jmmm.2007.06.020
[34] G. Herzer, Nanocrystalline soft magnetic alloys, Handbook of magnetic materials 10 (1997) 416-462. https://doi.org/10.1016/S1567-2719(97)10007-5
[35] B. Avar, T. Simsek, S. Ozcan, A.K. Chattopadhyay, B. Kalkan, Structural stability of mechanically alloyed amorphous FeCoNi)70Ti10B20 under high temperature and high-pressure, Journal of Alloys and Compounds 860 (2021) 158-164. https://doi.org/10.1016/j.jallcom.2020.158528
[36] Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, Journal of IEEE Transactions on Magnetics 26 (1999) 1397-1402.         10.1109/20.104389