[2] C. Capdevila, U. Miller, H. Jelenak, H. Bhadeshia, Strain heterogeneity and the production of coarse grains in mechanically alloyed iron-based PM2000 alloy, Materials Science and Engineering A 316 (2001) 161-165. https://doi.org/10.1016/S0921-5093(01)01234-5
[4] R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, Preparation of nanocrystalline Fe–Ni powders by mechanical alloying used in soft magnetic composites, Journal of Magnetism and Magnetic Materials 320 (2008) 1089–1094. https://doi.org/10.1016/j.jmmm.2007.10.033
[7] D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hall, London (1991).
[8] H. Moumeni, S. Alleg, J.M. Greneche, Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying, Journal of Alloys and Compounds, 386 (2005) 12–19. https://doi.org/10.1016/j.jallcom.2004.05.017
[9] B. Bhoi, V. Srinivas, V. Singh, Evolution of microstructure and magnetic properties of nanocrystalline Fe70-xCuxCo30 alloy prepared by mechanical alloying, Journal of Alloys and Compounds 496 (2010) 423–428. https://doi.org/10.1016/j.jallcom.2010.01.155
[10] D. Ping, K. Hono, H. Kanekiyo, S. Hirosawa. Microalloying effect of Cu and Nb on the microstructure and magnetic properties of Fe3B/Nd2Fe14B nanocomposite permanent magnets, IEEE Transaction on Magnetism 35 (1999) 3262–3264. 10.1109/20.800492
[11] Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrrafine grain structure, Journal of Applied Physics 64 (1988) 6044–6046. https://doi.org/10.1063/1.342149
[13] H.A. Baghbaderani, S. Sharafi, M. Delshad Chermahini, Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying, Powder Technology 230 (2012) 241-246. https://doi.org/10.1016/j.powtec.2012.07.039
[14] M. Delshad Chermahini, S. Sharafi, H. Shokrollahi, M. Zandrahimi, Microstructural and magnetic properties of nanostructured Fe and Fe50Co50 powders prepared by mechanical alloying, Journal of Alloys and Compounds 474 (2009) 18-22. https://doi.org/10.1016/j.jallcom.2008.06.144
[15] H. Raanaei, H. Eskandari, V. Mohammad-Hosseini, Structural and magnetic properties of nanocrystalline Fe–Co–Ni alloy processed by mechanical alloying, Journal of Magnetism and Magnetic Materials, 398 (2016) 190–195. https://doi.org/10.1016/j.jmmm.2015.09.031
[16] L. Lutterotti, MAUD version 2.55, Materials Analysis Using Diffraction. A Rietveld extended program to perform the combined analysis. It can be used to fit diffraction, fluorescence and reflectivity data using X-ray, neutron, TOF or electrons, (2015). http://maud.radiographema.eu/
[20] G.P. Tiwari, R.S. Mehrotra, Diffusion and Melting, Defect and Diffusion Forum 279 (2008) 23-37.
10.4028/www.scientific.net/DDF.279.23
[21] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. Chapman & Hall, London, (1992).
[23] C. Kittel, Introduction to solid state physics, 8th ed, John Wiley, New York, (2005).
[28] A. Barbosa, G. Bobrovnitchii, A. Skury, R. Guimaraes, M. Filgueira,
[30] H. Raanaei, V. Mohammad-Hosseini. Morphology and magnetic behavior of cobalt rich amorphous/nanocrystalline (Co–Ni)70Ti10B20 alloyed powders, Journal of Magnetism and Magnetic Materials 414 (2016) 90–96. https://doi.org/10.1016/j.jmmm.2016.04.040
[31] L. Karimi, H. Shokrollahi, Structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni63Fe13Mo4Nb20 powders prepared by mechanical alloying, Journal of Alloys and Compounds 509 (2011) 6571- 6577. https://doi.org/10.1016/j.jallcom.2011.03.060
[33] T. Pikula, D. Oleszak, M. Pękała, E. Jartych, Structure and some magnetic properties of mechanically synthesized and thermally treated Co–Fe–Ni alloys, Journal of Magnetism and Magnetic Materials 320 (2008) 413- 420. https://doi.org/10.1016/j.jmmm.2007.06.020
[35] B. Avar, T. Simsek, S. Ozcan, A.K. Chattopadhyay, B. Kalkan, Structural stability of mechanically alloyed amorphous FeCoNi)70Ti10B20 under high temperature and high-pressure, Journal of Alloys and Compounds 860 (2021) 158-164. https://doi.org/10.1016/j.jallcom.2020.158528