رفتار نیمه‌فلزی، پایداری ترمودینامیکی و عملکرد ترموالکتریکی هویسلرهای چهارتایی جدید CoXMnSi(X=Rh,Tc)

نوع مقاله : مقاله پژوهشی کامل

نویسنده

گروه فیزیک، دانشکدة علوم پایه، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مطالعۀ رفتار نیمه‌فلزی، ترموالکتریکی و پایداری ترمودینامیکی ترکیب‌های جدید هویسلر چهارتایی CoXMnSi(X=Rh, Tc) برمبنای محاسبات نظریۀ تابعی چگالی انجام پذیرفته است. این ترکیب‌ها دارای حجم تعادلی هستند و برای آن‌ها ثابت‌های شبکۀ تعادلی 81/5 و 77/5 آنگستروم به ترتیب برای CoRhMnSi و CoTcMnSi به‌دست آمد که در تطابق با دیگر کارها است. بررسی نمودارهای فاز ترمودینامیکی نشان داد که این دو ترکیب در تمام شرایط ترمودینامیکی پایدار خواهند بود. هم‌چنین مدول حجمی این دو ترکیب به ترتیب 8/225 و 5/242 گیگا پاسکال محاسبه شده است که نشان از سختی بسیار بالای بلوری آن‌ها دارد. محاسبات ساختار الکترونی بیانگر رفتار نیمه فلزی با قطبش اسپینی 100% در هر دو ساختار است. ترکیب CoRhMnSi در اسپین اقلیت با تقریب‌های GGA و GGA+U دارای گاف‌های 65/0 و 72/0 الکترون ولت و ترکیب CoTcMnSi نیز بر اساس تقریب‌های فوق دارای گاف 22/0 و 51/0 الکترون ولت شده است. هم‌چنین بررسی خواص ترموالکتریکی نشان می‌دهد که این ترکیب‌ها با شاخص مریت 99/0 در دمای اتاق کاندیداهای مناسبی برای مقاصد ترموالکتریکی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Half-metallic behavior, thermodynamic stability and thermoelectric performance of new CoXMnSi (X=Rh, Tc) quaternary Heuslers

نویسنده [English]

  • Mansoure Ilkhani
Department of Physics, Faculty of Science, Shahr-e-Qods branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Half-metallic, thermoelectric, and also thermodynamic stability of CoXMnSi (X = Rh, Tc) quaternary Heusler compounds were performed by density functional theory calculations. These compounds have an equilibrium volume with the lattice constants of 5.81 and 5.77 Aᵒ for CoRhMnSi and CoTcMnSi, respectively, which is consistent with the other functions. Moreover, the bulk moduli of these compounds have been calculated to be 225.8GPa and 242.5GPa, respectively, which indicates their very high crystalline hardness. Thermodynamic phase diagrams confirmed the thermodynamic stability of these compounds. Electronic calculations show half-metallic behavior with 100% spin polarization at the Fermi level for both compounds. The CoRhMnSi has 0.65eV and 0.72eV, and CoTcMnSi has 0.22eV and 0.51eV spin gap in minority spin when applying the GGA and GGA+U approximations, respectively. Also, the study of thermoelectric properties shows that these compounds with a figure of merit index of 0.99 at room temperature are suitable candidates for thermoelectric purposes, which is in agreement with other works.

کلیدواژه‌ها [English]

  • DFT
  • CoXMnSi (X = Rh
  • Tc) compounds
  • half-metallic behavior
  • thermoelectric
  • thermodynamic phase diagram
[1] J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, Flexible thermoelectric materials and device optimization for wearable energy harvesting, Journal of Materials Chemistry C 3 (2015) 10362-10374. https://doi.org/10.1039/C5TC01644D
[2] T. Mori, S. Priya, Materials for energy harvesting: At the forefront of a new wave, MRS Bulletin 43 (2018) 176-180. https://doi.org/10.1557/mrs.2018.32
[3] S.A. Barczak, et al., Grain-by-Grain Compositional Variations and Interstitial Metals- A New Route toward Achieving High Performance in Half-Heusler Thermoelectrics, ACS applied materials & interfaces 10 (2018) 4786-4793. https://doi.org/10.1021/acsami.7b14525
[4] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high‐efficiency thermoelectric materials, Advanced materials 29 (2017) 1605884-1605910. https://doi.org/10.1002/adma.201605884
[5] L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications, Advanced Energy Materials 8 (2018) 1701797-1701825. https://doi.org/10.1002/aenm.201701797
[6] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nature communications 6 (2015) 1-7. https://doi.org/10.1038/ncomms9144
[7] Y. Liu, et al., Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials, Advanced Materials 30 (2018) 1800881-1800888. https://doi.org/10.1002/adma.201800881
[8] R. He, et al., Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M= Hf, Zr), Materials Today Physics 1 (2017) 24-30. https://doi.org/10.1016/j.mtphys.2017.05.002
[9] J. Shen, et al., Low contact resistivity and interfacial behavior of p-type NbFeSb/Mo thermoelectric junction, ACS applied materials & interfaces 11 (2019) 14182-14190. https://doi.org/10.1021/acsami.9b02124
[10] D. Black, et al., Power Generation from Nanostructured Half-Heusler Thermoelectrics for Efficient and Robust Energy Harvesting, ACS Applied Energy Materials 1 (2018) 5986-5992. https://doi.org/10.1021/acsaem.8b01042
[11] G. Joshi, NbFeSb-based p-type half-Heuslers for power generation applications, Energy & Environmental Science 7 (2014) 4070-4076. https://doi.org/10.1039/C4EE02180K
[12] T. Saito, N. Tezuka, M. Matsuura, S. Sugimoto, Spin injection, transport, and detection at room temperature in a lateral spin transport device with Co2FeAl0. 5Si0. 5/n-GaAs schottky tunnel junctions, Applied Physics Express 6 (2013) 103006-103011. https://doi.org/10.7567/APEX.6.103006
[13] T. Klimczuk, et al., Superconductivity in the Heusler family of intermetallics, Physical Review B 85 (2012) 174505-174513.
https://doi.org/10.1103/PhysRevB.85.174505
[14] J.H. Wernick, G.W. Hull, T.H. Geballe, J.E. Bernardini, J.V. Waszczak, Superconductivity in ternary Heusler intermetallic compounds, Materials Letters 2 (1983) 90-92. https://doi.org/10.1016/0167-577X(83)90043-5
[15] T. Graf, C. Felser, S.S. Parkin, Simple rules for the understanding of Heusler compounds, Progress in solid state chemistry 39 (2011) 1-50. https://doi.org/10.1016/j.progsolidstchem.2011.02.001
[16] K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors, Journal of Applied Physics 113 (2013) 193903-193907. https://doi.org/10.1063/1.4805063
[17] G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N.  Liu, Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z= Al, Si, Ga, Ge): A first-principles study, Journal of alloys and compounds 551 (2013) 539-543. https://DOI: 10.1016/j.jallcom.2012.11.077
[18] X.L. Wang, Proposal for a new class of materials: spin gapless semiconductors, Physical review letters 100 (2008) 156404-156408. https://doi.org/10.1103/PhysRevLett.100.156404
[19] L. Bainsla, et al., Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment, Physical Review B 92 (2015) 045201-045206.
https://doi.org/10.1103/PhysRevB.92.045201
[20] V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications, Physical Review B 83 (2011) 184428-184435. https://doi.org/10.1103/PhysRevB.83.184428
[21] V. Alijani, et al., Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMn Z (Z= Al, Ga, Si, Ge). Physical Review B 84 (2011) 224416-224426. https://doi.org/10.1103/PhysRevB.84.224416
[22] L. Bainsla, K.G. Suresh, Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications, Applied Physics Reviews 3 (2016) 031101-031122. https://doi.org/10.1063/1.4959093
[23] X. Wang, et al., Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: a first-principles study, Scientific reports 7 (2017) 1-13. https://doi.org/10.1038/s41598-017-16324-2
[24] L. Bainsla, M.M. Raja, A.K. Nigam, K.G. Suresh, CoRuFeX (X= Si and Ge) Heusler alloys: High TC materials for spintronic applications, Journal of Alloys and Compounds 651 (2015) 631-635. https://doi.org/10.1016/j.jallcom.2015.08.150
[25] R. Guo,et al., First-principles study on quaternary Heusler compounds ZrFeVZ (Z= Al, Ga, In) with large spin-flip gap, RSC advances 6 (2016) 109394-109400. https://doi.org/10.1039/C6RA18873G
[26] A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, B. Sanyal, New quaternary half-metallic ferromagnets with large Curie temperatures, Scientific reports 7 (2017) 1-15.        https://doi.org/10.1038/s41598-017-01782-5
[27] S. Ghosh, S. Ghosh, Site dependent substitution and half-metallic behaviour in Heusler compounds: A case study for Mn2RhSi, Co2RhSi and CoRhMnSi, Computational Condensed Matter 21 (2019) e00423. https://doi.org/10.1016/j.cocom.2019.e00423

[28] M. Benkabou, et al., Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations, Journal of Alloys and Compounds 647 (2015) 276-286. https://doi.org/10.1016/j.jallcom.2015.05.273

[29] Kh. Jafari, F. Ahmadian, First-Principles Study of Magnetism and Half-Metallic Properties for the Quaternary Heusler Alloys CoRhYZ (Y = Sc, Ti, Cr, and Mn; Z = Al, Si, and P), Journal of Superconductivity and Novel Magnetism 30 (2017) 2655–2664. https://doi.org/10.1007/s10948-017-4080-y
 
 

[31] H. Salehi, M. Halvaee, P. Amiri, Calculation of electronic, structural, optical and elastic properties of Heusler compounds (Co2CrAl and Co2CrGa), Journal of Research on Many-body Systems 8 (2018) 69-78.                                                           10.22055/JRMBS.2018.13940

[32] H. Salehi, A. Abdollahi, Calculation of electronic and optical properties of Na2S in the orthorombic phase, Journal of Research on Many-body Systems 7 (2017)  145-152. 10.22055/JRMBS.2017.13023

[33] A. Boochani, M. Amiri, Half-metallic behavior and Band alignment of ‎Mn2FeAl/GaAs(001) interface based on density functional ‎theory, Journal of Research on Many-body Systems 9 (2019) 20-24. 10.22055/JRMBS.2019.14583

[34] K. Schwarz, P. Blaha, Solid state calculations using WIEN2k, Computational Materials Science 28 (2003) 259-273. https://doi.org/10.1016/S0927-0256(03)00112-5
 [35] H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach, Physical Review Letters 97 (2006) 103001-103005. https://doi.org/10.1103/PhysRevLett.97.103001
[36] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865-3870. https://doi.org/10.1103/PhysRevLett.77.3865
[37] G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications 175 (2006) 67-71. https://doi.org/10.1016/j.cpc.2006.03.007
[38] F.D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the national academy of sciences of the United States of America 30 (1944) 244-248. https://doi.org/10.1073/pnas.30.9.244
[39] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307
[40] S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823-843. https://doi.org/10.1080/14786440808520496
[41] G.Z. Xu, E.K. Liu, Y. Du, G.J.Li, G.D. Liu, W.H. Wang, G.H. Wu, A new spin gapless semiconductors family: Quaternary Heusler compounds, EPL (Europhysics Letters) 102 (2013) 17007-17013. https://doi.org/10.1209/0295-075/102/17007
[42] G. Xu, Y. You, Y. Gong, E. Liu, F. Xu, W. Wang, Highly-dispersive spin gapless semiconductors in rare-earth-element contained quaternary Heusler compounds, Journal of Physics D: Applied Physics 50 (2017) 105003-105013. https://doi.org/10.1088/1361-6463/aa57a3

[43] G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study, Journal of Alloys and Compounds 551 (2013) 539-543. https://doi.org/10.1016/j.jallcom.2012.11.077

[44] Y. Wang, J. Cheng, M. Behtash, W. Tang, J. Luo, K. Yang, First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram, Physical Chemistry Chemical Physics 20 (2018) 18515-18527. https://doi.org/10.1039/C8CP02540A
 
[45] H. Shi, W. Ming, D.S. Parker, M.H. Du, D.J. Singh, Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn, Physical Review B 95 (2017) 195207-195213. https://doi.org/10.1103/PhysRevB.95.195207
[46] M. Ilkhani, A. Boochani, M. Amiri, M. Asshabi, D.P. Rai, Mechanical stability and thermoelectric properties of the PdZrTiAl quaternary Heusler: A DFT study, Solid State Communications 308 (2020) 113838. https://doi.org/10.1016/j.ssc.2020.113838
[47] G.K. Madsen, Automated search for new thermoelectric materials: the case of LiZnSb, Journal of the American Chemical Society 128 (2006) 12140-12146. https://doi.org/10.1021/ja062526a