[1] J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, Flexible thermoelectric materials and device optimization for wearable energy harvesting, Journal of Materials Chemistry C 3 (2015) 10362-10374. https://doi.org/10.1039/C5TC01644D
[3] S.A. Barczak, et al., Grain-by-Grain Compositional Variations and Interstitial Metals- A New Route toward Achieving High Performance in Half-Heusler Thermoelectrics, ACS applied materials & interfaces 10 (2018) 4786-4793. https://doi.org/10.1021/acsami.7b14525
[4] T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high‐efficiency thermoelectric materials, Advanced materials 29 (2017) 1605884-1605910. https://doi.org/10.1002/adma.201605884
[5] L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications, Advanced Energy Materials 8 (2018) 1701797-1701825. https://doi.org/10.1002/aenm.201701797
[6] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nature communications 6 (2015) 1-7. https://doi.org/10.1038/ncomms9144
[7] Y. Liu, et al., Lanthanide Contraction as a Design Factor for High‐Performance Half‐Heusler Thermoelectric Materials, Advanced Materials 30 (2018) 1800881-1800888. https://doi.org/10.1002/adma.201800881
[9] J. Shen, et al., Low contact resistivity and interfacial behavior of p-type NbFeSb/Mo thermoelectric junction, ACS applied materials & interfaces 11 (2019) 14182-14190. https://doi.org/10.1021/acsami.9b02124
[10] D. Black, et al., Power Generation from Nanostructured Half-Heusler Thermoelectrics for Efficient and Robust Energy Harvesting, ACS Applied Energy Materials 1 (2018) 5986-5992. https://doi.org/10.1021/acsaem.8b01042
[12] T. Saito, N. Tezuka, M. Matsuura, S. Sugimoto, Spin injection, transport, and detection at room temperature in a lateral spin transport device with Co2FeAl0. 5Si0. 5/n-GaAs schottky tunnel junctions, Applied Physics Express 6 (2013) 103006-103011. https://doi.org/10.7567/APEX.6.103006
[13] T. Klimczuk, et al., Superconductivity in the Heusler family of intermetallics, Physical Review B 85 (2012) 174505-174513.
https://doi.org/10.1103/PhysRevB.85.174505
[16] K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors, Journal of Applied Physics 113 (2013) 193903-193907. https://doi.org/10.1063/1.4805063
[17] G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z= Al, Si, Ga, Ge): A first-principles study, Journal of alloys and compounds 551 (2013) 539-543. https://DOI: 10.1016/j.jallcom.2012.11.077
[18] X.L. Wang, Proposal for a new class of materials: spin gapless semiconductors, Physical review letters 100 (2008) 156404-156408. https://doi.org/10.1103/PhysRevLett.100.156404
[19] L. Bainsla, et al., Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment, Physical Review B 92 (2015) 045201-045206.
https://doi.org/10.1103/PhysRevB.92.045201
[20] V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications, Physical Review B 83 (2011) 184428-184435. https://doi.org/10.1103/PhysRevB.83.184428
[21] V. Alijani, et al., Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMn Z (Z= Al, Ga, Si, Ge). Physical Review B 84 (2011) 224416-224426. https://doi.org/10.1103/PhysRevB.84.224416
[22] L. Bainsla, K.G. Suresh, Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications, Applied Physics Reviews 3 (2016) 031101-031122. https://doi.org/10.1063/1.4959093
[23] X. Wang, et al., Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: a first-principles study, Scientific reports 7 (2017) 1-13. https://doi.org/10.1038/s41598-017-16324-2
[24] L. Bainsla, M.M. Raja, A.K. Nigam, K.G. Suresh, CoRuFeX (X= Si and Ge) Heusler alloys: High TC materials for spintronic applications, Journal of Alloys and Compounds 651 (2015) 631-635. https://doi.org/10.1016/j.jallcom.2015.08.150
[25] R. Guo,et al., First-principles study on quaternary Heusler compounds ZrFeVZ (Z= Al, Ga, In) with large spin-flip gap, RSC advances 6 (2016) 109394-109400. https://doi.org/10.1039/C6RA18873G
[26] A. Kundu, S. Ghosh, R. Banerjee, S. Ghosh, B. Sanyal, New quaternary half-metallic ferromagnets with large Curie temperatures, Scientific reports 7 (2017) 1-15. https://doi.org/10.1038/s41598-017-01782-5
[27] S. Ghosh, S. Ghosh, Site dependent substitution and half-metallic behaviour in Heusler compounds: A case study for Mn2RhSi, Co2RhSi and CoRhMnSi, Computational Condensed Matter 21 (2019) e00423. https://doi.org/10.1016/j.cocom.2019.e00423
[35] H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach, Physical Review Letters 97 (2006) 103001-103005. https://doi.org/10.1103/PhysRevLett.97.103001
[36] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865-3870. https://doi.org/10.1103/PhysRevLett.77.3865
[38] F.D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the national academy of sciences of the United States of America 30 (1944) 244-248. https://doi.org/10.1073/pnas.30.9.244
[40] S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823-843. https://doi.org/10.1080/14786440808520496
[41] G.Z. Xu, E.K. Liu, Y. Du, G.J.Li, G.D. Liu, W.H. Wang, G.H. Wu, A new spin gapless semiconductors family: Quaternary Heusler compounds, EPL (Europhysics Letters) 102 (2013) 17007-17013. https://doi.org/10.1209/0295-075/102/17007
[42] G. Xu, Y. You, Y. Gong, E. Liu, F. Xu, W. Wang, Highly-dispersive spin gapless semiconductors in rare-earth-element contained quaternary Heusler compounds, Journal of Physics D: Applied Physics 50 (2017) 105003-105013. https://doi.org/10.1088/1361-6463/aa57a3
[44] Y. Wang, J. Cheng, M. Behtash, W. Tang, J. Luo, K. Yang, First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram, Physical Chemistry Chemical Physics 20 (2018) 18515-18527. https://doi.org/10.1039/C8CP02540A
[45] H. Shi, W. Ming, D.S. Parker, M.H. Du, D.J. Singh, Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn, Physical Review B 95 (2017) 195207-195213. https://doi.org/10.1103/PhysRevB.95.195207
[46] M. Ilkhani, A. Boochani, M. Amiri, M. Asshabi, D.P. Rai, Mechanical stability and thermoelectric properties of the PdZrTiAl quaternary Heusler: A DFT study, Solid State Communications 308 (2020) 113838. https://doi.org/10.1016/j.ssc.2020.113838
[47] G.K. Madsen, Automated search for new thermoelectric materials: the case of LiZnSb, Journal of the American Chemical Society 128 (2006) 12140-12146. https://doi.org/10.1021/ja062526a