[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197. https://doi.org/10.1038/nature04233
[3] S. Okada, Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures, Physical Review B 77 (2008) 041408. https://link.aps.org/doi/10.1103/PhysRevB.77.041408
[4] H.B. Gautam Mukhopadhyay, Graphene and some of its structural analogues: full-potential density functional theory calculations, World Journal of Engineering 10 (2013) 39-48. https://arxiv.org/abs/1303.3885
[5] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and Graphene-Based Materials for Energy Storage Applications. Small, 10 (2014) 3480-3498. https://doi.org/10.1002/smll.201303202
[6] C. Su, H. Jiang, J. Feng, Two-dimensional carbon allotrope with strong electronic anisotropy, Physical Review B 87 (2013) 075453. https://link.aps.org/doi/10.1103/PhysRevB.87.075453
[7] C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Graphene Analogues of Inorganic Layered Materials, Angewandte Chemie International Edition 52 (2013) 13162-13185. https://doi.org/10.1002/anie.201301548
[8] D. Malko, C. Neiss, F. Viñes, A. Görling, Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones, Physical Review Letters 108 (2012) 086804. https://link.aps.org/doi/10.1103/PhysRevLett.108.086804
[9] C.-C. Liu, W. Feng, Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium, Physical Review Letters 107 (2011) 076802. https://link.aps.org/doi/10.1103/PhysRevLett.107.076802
[10] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Physical Review Letters 108 (2012) 155501. https://link.aps.org/doi/10.1103/PhysRevLett.108.155501
[11] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B 76 (2007) 073103. https://link.aps.org/doi/10.1103/PhysRevB.76.073103
[12] K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat Mater 3 (2004) 404-9. https://www.nature.com/articles/nmat1134
[13] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band-Gap Transitions, Angewandte Chemie 127 (2015) 3155-3158. https://doi.org/10.1002/ange.201411246
[14] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene, Small 11 (2015) 640-652. https://doi.org/10.1002/smll.201402041
[15] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angewandte Chemie International Edition 55 (2016) 1666-1669. https://doi.org/10.1002/anie.201507568
[16] S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S. A. Yang, Z. Zhu, Z. Chen, H. Zeng, Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator, Nano Letters 17 (2017) 3434-3440. https://doi.org/10.1021/acs.nanolett.7b00297
[17] S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chemical Society Reviews 47 (2018) 982-1021. http://dx.doi.org/10.1039/C7CS00125H
[19] W. Zhou, S. Guo, S. Zhang, Z. Zhu, X. Song, T. Niu, K. Zhang, X. Liu, Y. Zou, H. Zeng, DFT coupled with NEGF study of a promising two-dimensional channel material: black phosphorene-type GaTeCl, Nanoscale 10 (2018) 3350-3355. http://dx.doi.org/10.1039/C7NR08252E
[20] S. Zhang, J. Zhou, Q. Wang, P. Jena, Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet, The Journal of Physical Chemistry C 120 (2016) 3993-3998. https://doi.org/10.1021/acs.jpcc.5b12510
[21] A. Lopez-Bezanilla, P.B. Littlewood, σ–π-Band Inversion in a Novel Two-Dimensional Material, The Journal of Physical Chemistry C 119 (2015) 19469-19474. https://doi.org/10.1021/acs.jpcc.5b04726
[22] F. Li, K. Tu, H. Zhang, Z. Chen, Flexible structural and electronic properties of a pentagonal B2C monolayer via external strain: a computational investigation, Physical Chemistry Chemical Physics 17 (2015) 24151-24156. http://dx.doi.org/10.1039/C5CP03885E
[24] H. Morshedi, M. Naseri, M.R. Hantehzadeh, S.M. Elahi, Theoretical Prediction of an Antimony-Silicon Monolayer $$(hbox {penta-Sb}_{2}hbox {Si})$$(penta-Sb2Si): Band Gap Engineering by Strain Effect, Journal of Electronic Materials 47 (2018) 2290-2297. https://doi.org/10.1007/s11664-017-6045-0
[28] H. Alborznia, M. Naseri, N. Fatahi, Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure, Superlattices and Microstructures 133 (2019) 106217. https://doi.org/10.1016/j.spmi.2019.106217
[30] D.M. Hoat, S. Amirian, H. Alborznia, A. Laref, A.H. Reshak, M. Naseri, Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian Journal of Physics (2021). https://doi.org/10.1007/s12648-020-01913-1
[31] G. Paolo, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502. http://stacks.iop.org/0953-8984/21/i=39/a=3 95502
[32] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, An augmented Plane Wave+Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013) Wien2K users guide. ISBN 3-9501031-1-2. https://www.scholars.northwestern.edu/en/publications/wien2k-an-augmented-plane-wave-plus-local-orbitals-program-for-ca
[33] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865-3868. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
[34] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics 118 (2003) 8207-8215. https://doi.org/10.1063/1.1564060
[35] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192. https://link.aps.org/doi/10.1103/PhysRevB.13.5188
[36] H. Ehrenreich, M.H. Cohen, Self-Consistent Field Approach to the Many-Electron Problem. Physical Review 115 (1959) 786-790. https://link.aps.org/doi/10.1103/PhysRev.115.786
[37] F. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain, Journal of Geophysical Research: Solid Earth 91 (1986) 4949-4954. https://doi.org/10.1029/JB091iB05p04949
[38] Y. Li, Y. Liao, Z. Chen, Be2C Monolayer with Quasi-Planar Hexacoordinate Carbons: A Global Minimum Structure. Angewandte Chemie International Edition, 53 (2014) 7248-7252. https://doi.org/10.1002/anie.201403833
[39] H.R. Alborznia, S.T. Mohammadi, Investigation of electronic and optical properties of novel graphene-like GeS2 monolayer by density function theory, Iranian Journal of Physics Research 20 (2020) 259-265. http://ijpr.iut.ac.ir/article_1614.html
[41] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nature Materials 13 (2014) 897-903. https://doi.org/10.1038/nmat4014